ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Observation of the Edge-on Spiral NGC 5775: Probing the Hot Galactic Disk/Halo Connection

52   0   0.0 ( 0 )
 نشر من قبل Jiang-Tao Li Mr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the edge-on galaxy NGC 5775, utilizing a 58.2 ks {sl Chandra} ACIS-S observation together with complementary {sl HST} ACS, {sl Spitzer} IRAC and other multi-wavelength data sets. This edge-on galaxy, with its disk-wide active star formation, is particularly well-suited for studying the disk/halo interaction on sub-galactic scales. We detect 27 discrete X-ray sources within the $D_{25}$ region of the galaxy, including an ultra-luminous source with a 0.3-7 keV luminosity of $sim7times10^{40}rm ergs s^{-1}$. The source-removed diffuse X-ray emission shows several prominent extraplanar features, including a $sim10rm kpc$ diameter ``shell-like feature and a ``blob reaching a projected distance of $sim25rm kpc$ from the galactic disk. The bulk of the X-ray emission in the halo has a scale height of $sim$1.5 kpc and can be characterized by a two-temperature optically thin thermal plasma with temperatures of $sim$ 0.2 and 0.6 keV and a total 0.3-2 keV luminosity of $sim3.5times10^{39}rm ergs s^{-1}$. The high-resolution, multi-wavelength data reveal the presence of several extraplanar features around the disk, which appear to be associated with the in-disk star formation. We suggest that hot gas produced with different levels of mass loading can have different temperatures, which may explain the characteristic temperatures of hot gas in the halo. We have obtained a sub-galactic scale X-ray-intensity-star formation relation, which is consistent with the integrated version in other star forming galaxies.


قيم البحث

اقرأ أيضاً

Cosmic rays play a pivotal role in launching galactic winds, particularly in quiescently star-forming galaxies where the hot gas alone is not sufficient to drive a wind. Except for the Milky Way, not much is known about the transport of cosmic rays i n galaxies. In this Letter, we present low-frequency observations of the nearby edge-on spiral galaxy NGC 4565 using the LOw-Frequency ARray (LOFAR). With our deep 144-MHz observations, we obtain a clean estimate of the emission originating from old cosmic-ray electrons (CRe), which is almost free from contamination by thermal emission. We measured vertical profiles of the non-thermal radio continuum emission that we fitted with Gaussian and exponential functions. The different profile shapes correspond to 1D cosmic-ray transport models of pure diffusion and advection, respectively. We detect a warp in the radio continuum that is reminiscent of the previously known HI warp. Because the warp is not seen at GHz-frequencies in the radio continuum, its minimum age must be about 100 Myr. The warp also explains the slight flaring of the thick radio disc that can otherwise be well described by a Gaussian profile with an FWHM of 65 arcsec (3.7 kpc). The diffusive radio halo together with the extra-planar X-ray emission may be remnants of enhanced star-forming activity in the past where the galaxy had a galactic wind, as GHz-observations indicate only a weak outflow in the last 40 Myr. NGC 4565 could be in transition from an outflow- to an inflow-dominated phase.
379 - Jiang-Tao Li 2017
We present the analysis of the XMM-Newton data of the Circum-Galactic Medium of MASsive Spirals (CGM-MASS) sample of six extremely massive spiral galaxies in the local Universe. All the CGM-MASS galaxies have diffuse X-ray emission from hot gas detec ted above the background extending $sim(30-100)rm~kpc$ from the galactic center. This doubles the existing detection of such extended hot CGM around massive spiral galaxies. The radial soft X-ray intensity profile of hot gas can be fitted with a $beta$-function with the slope typically in the range of $beta=0.35-0.55$. This range, as well as those $beta$ values measured for other massive spiral galaxies, including the Milky Way (MW), are in general consistent with X-ray luminous elliptical galaxies of similar hot gas luminosity and temperature, and with those predicted from a hydrostatic isothermal gaseous halo. Hot gas in such massive spiral galaxy tends to have temperature comparable to its virial value, indicating the importance of gravitational heating. This is in contrast to lower mass galaxies where hot gas temperature tends to be systematically higher than the virial one. The ratio of the radiative cooling to free fall timescales of hot gas is much larger than the critical value of $sim10$ throughout the entire halos of all the CGM-MASS galaxies, indicating the inefficiency of gas cooling and precipitation in the CGM. The hot CGM in these massive spiral galaxies is thus most likely in a hydrostatic state, with the feedback material mixed with the CGM, instead of escaping out of the halo or falling back to the disk. We also homogenize and compare the halo X-ray luminosity measured for the CGM-MASS galaxies and other galaxy samples and discuss the missing galactic feedback detected in these massive spiral galaxies.
A halo model with heavy relic neutrinos N belonging to a fourth generation and their annihilations in galactic halo may explain the recent evidence of diffused gamma (GeV) radiation around galactic plane. We considered a neutrino mass in the narrow r ange ($M_Z/2 < m_N < M_Z$) and two main processes as source of gamma rays. A first one is ICS of ultrarelativistic electron pair on IR and optical galactic photons and a second due to prompt gammas by $pi^0$ decay, leading to a gamma flux ($10^{-7} - 10^{-6} /(cm^2 s sr)$) comparable to EGRET detection. Our predictions are also compatible with the narrow window of neutrino mass $45 GeV < m_N < 60 GeV$, required to explain the recent underground DAMA positive signals.
X-ray-emitting coronae of nearby galaxies are expected to be produced either by accretion from the intergalactic medium and/or by various galactic feedback. We herein present a systematical analysis of the Chandra observations of 53 nearby edge-on di sk galaxies over a range of 3 orders of magnitude in SFR. Various coronal properties, such as the luminosity, vertical/horizontal extent, and other inferred parameters, are characterized for all the sample galaxies. For galaxies with high enough counting statistics, we also examine the thermal and chemical states of the coronal gas. Here we concentrate on the coronal luminosity (Lx), estimated in 0.5-2keV and within 5 times the diffuse X-ray vertical scale height. We find Lx strongly correlates with the SFR for the whole sample. But the inclusion of Ia SNe in the total energy input (E_SN) gives an even tighter correlation, which may be characterized with a linear relation, Lx=0.5%E_SN, and with a dispersion of 0.45dex. Moreover, the coronal radiation efficiency (eta=Lx/E_SN) shows little correlation with either the stellar mass or the gravitational mass (M_TF, inferred from the rotation velocity), but is significantly correlated with their ratio (M_TF/M_*), which may be expressed as a linear scaling relation eta=0.35%M_TF/M_* for the entire ranges of galaxy parameters. This joint scaling relation suggests that the coronae are self-regulated by the combination of gravitational confinement and feedback. But SN appears to be the primary heating source, because about half of our galaxies are not massive enough to allow for the accretion to play a major role. The commonly low eta further suggests that the bulk of the SN energy likely flows out into large-scale galactic halos for essentially all the galaxies. Such ubiquitous outflows could have profound implications for understanding the ecosystem, hence the evolution of galaxies.
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a near by, edge-on, Milky Way analog. We find that the hot gas is dominated by low metallicity gas near the virial temperature at $kT=0.20pm0.01$ keV and $Z/Z_{odot} = 0.14pm0.03$(stat)$^{+0.08}_{-0.02}$(sys), and that this gas co-exists with hotter ($kT=0.71pm0.04$ keV) gas that is concentrated near the star-forming regions in the disk. Model choices lead to differences of $Delta Z/Z_{odot} sim 0.05$, and higher $S/N$ observations would be limited by systematic error and plasma emission model or abundance ratio choices. The low metallicity gas is consistent with the inner part of an extended halo accreted from the intergalactic medium, which has been modulated by star formation. However, there is much more cold gas than hot gas around NGC 891, which is difficult to explain in either the accretion or supernova-driven outflow scenarios. We also find a diffuse nonthermal excess centered on the galactic center and extending to 5 kpc above the disk with a 0.3-10 keV $L_X = 3.1times 10^{39}$ erg s$^{-1}$. This emission is inconsistent with inverse Compton scattering or single-population synchrotron emission, and its origin remains unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا