ﻻ يوجد ملخص باللغة العربية
We calculate intensity and angular power spectrum of the cosmological background of synchrotron emission from cold dark matter annihilations into electron positron pairs. We compare this background with intensity and anisotropy of astrophysical and cosmological radio backgrounds, such as from normal galaxies, radio-galaxies, galaxy cluster accretion shocks, the cosmic microwave background and with Galactic foregrounds. Under modest assumptions for the dark matter clustering we find that around 2 GHz average intensity and fluctuations of the radio background at sub-degree scales allows to probe dark matter masses >100 GeV and annihilation cross sections not far from the natural values <sigma v> ~ 3 x 10^(-26) cm^3/s required to reproduce the correct relic density of thermal dark matter. The angular power spectrum of the signal from dark matter annihilation tends to be flatter than that from astrophysical radio backgrounds. Furthermore, radio source counts have comparable constraining power. Such signatures are interesting especially for future radio detectors such as SKA.
Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spe
The astronomical dark matter could be made of weakly interacting and massive particles. If so, these species would be abundant inside the Milky Way, where they would continuously annihilate and produce cosmic rays. Those annihilation products are pot
Under the assumption that dark matter is made of new particles, annihilations of those are required to reproduce the correct dark matter abundance in the Universe. This process can occur in dense regions of our Galaxy such as the Galactic center, dwa
One believes there is huge amount of Dark Matter particles in our Galaxy which manifest themselves only gravitationally. There is a big challenge to prove their existence in a laboratory experiment. To this end it is not sufficient to fight only for
Dark matter may induce apparent temporal variations in the physical constants, including the electromagnetic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field may induce apparent oscillati