ترغب بنشر مسار تعليمي؟ اضغط هنا

Fueling QSOs: The Relevance of Mergers

116   0   0.0 ( 0 )
 نشر من قبل Nicola Bennert
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicola Bennert




اسأل ChatGPT حول البحث

To study the relevance of mergers for the fueling of QSOs, we are currently conducting an HST imaging campaign of a sample of QSO host galaxies classified as ellipticals in the literature. Here, we present results from a study of the first five QSO host galaxies imaged with HST/ACS. For the majority of objects, strong signs of interactions such as tidal tails, shells, and other fine structure are revealed. We estimate the nature and age of the merger by comparing the images with numerical simulations. The merger ages range between a few hundred Myr up to a Gyr. These timescales are comparable to starburst ages in the QSO hosts previously inferred from Keck spectroscopy, but longer than theoretical estimates of AGN duty cycles. A possible scenario emerging from our results is that most QSO host galaxies experienced mergers with accompanying starbursts but that the activity is triggered with a delay of several hundreds Myr after the merger. To probe whether there is indeed a causal connection between the merger and the QSO activity, we study a control sample of inactive ellipticals. Our preliminary results do not reveal comparable fine structure.

قيم البحث

اقرأ أيضاً

The disruption of the M33 galaxy is evident from its extended gaseous structure. We present new data from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey that show the full extent and detailed spatial and kinematic structure of M33s neutr al hydrogen. Over 18% of the HI mass of M33 (M_HI(tot) =1.4 x 10^9 Msun) is found beyond the star forming disk as traced in the far-ultraviolet (FUV). The most distinct features are extended warps, an arc from the northern warp to the disk, diffuse gas surrounding the galaxy, and a southern cloud with a filament back to the galaxy. The features extend out to 22 kpc from the galaxy center (18 kpc from the edge of the FUV disk) and the gas is directly connected to M33s disk. Only five discrete clouds (i.e., gas not directly connected to M33 in position-velocity space) are catalogued in the vicinity of M33, and these clouds show similar properties to Galactic and M31 halo clouds. M33s gaseous features most likely originate from the tidal disruption of M33 by M31 1-3 Gyr ago as shown from an orbit analysis which results in a tidal radius < 15 kpc in the majority of M33s possible orbits. M33 is now beyond the disruptive gravitational influence of M31 and the gas appears to be returning to M33s disk and redistributing its star formation fuel. M33s high mean velocity dispersion in the disk (~18.5 km/s) may also be consistent with the previous interaction and high rate of star formation. M33 will either exhaust its star formation fuel in the next few Gyrs or eventually become star formation fuel for M31. The latter represents the accretion of a large gaseous satellite by a spiral galaxy, similar to the Magellanic Clouds relationship to the Galaxy.
A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is discussed. In H-mode plasmas dominated by ion- temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward towards the core. This mechanism is due to the quasi-neutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection or supersonic gas jets is augmented by an inward pinch of could DT fuel. The natural fueling mechanism is demonstrated using the three-dimensional toroidal electromagnetic gyrokinetic turbulence code GEM and is analyzed using quasilinear theory. Profiles similar to those used for conservative ITER transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rates and energy transport.
We present a sample of $i_{775}$-dropout candidates identified in five Hubble Advanced Camera for Surveys fields centered on Sloan Digital Sky Survey QSOs at redshift $zsim 6$. Our fields are as deep as the Great Observatory Origins Deep Survey (GOOD S) ACS images which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of $i_{775}$-dropout counts in the five fields is broader than that derived from GOODS at the 80% to 96% confidence level, depending on which selection criteria were adopted to identify $i_{775}$-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.
We have embarked upon a project to model the UV spectra of BALQSOs using a Monte Carlo radiative transfer code previously validated through modelling of the winds of cataclysmic variable stars (e.g. Noebauer et al. 2010). We intend to use the simulat ions to investigate the plausibility of geometric unification (e.g. Elvis 2000) of the different classes of QSO. Here we introduce the code, and present some initial results. These demonstrate that for reasonable geometries and mass loss rates we are able to produce synthetic spectra which reproduce the important features of observed BALQSO spectra.
We outline our recently started program to investigate the galaxy environment of QSOs, in particular of radio-quiet objects at intermediate redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا