ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric silicate dust distribution toward the silicate carbon star BM Gem

119   0   0.0 ( 0 )
 نشر من قبل Keiichi Ohnaka
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicate carbon stars show the 10 micron silicate emission, despite their carbon-rich photospheres. They are considered to have circumbinary or circum-companion disks, which serve as a reservoir of oxygen-rich material shed by mass loss in the past. We present N-band spectro-interferometric observations of the silicate carbon star BM Gem using MIDI at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the spatial distribution of oxygen-rich dust with high spatial resolution. BM Gem was observed with VLTI/MIDI at 44--62 m baselines using the UT2-UT3 and UT3-UT4 baseline configurations. The N-band visibilities observed for BM Gem show a steep decrease from 8 to ~10 micron and a gradual increase longward of ~10 micron, reflecting the optically thin silicate emission feature emanating from sub-micron-sized amorphous silicate grains. The differential phases obtained at baselines of ~44--46 m show significant non-zero values (~ -70 degrees) in the central part of the silicate emission feature between ~9 and 11 micron, revealing a photocenter shift and the asymmetric nature of the silicate emitting region. The observed N-band visibilities and differential phases can be fairly explained by a simple geometrical model in which the unresolved star is surrounded by a ring with azimuthal brightness modulation. The best-fit model is characterized by a broad ring (~70 mas across at 10 micron) with a bright region which is offset from the unresolved star by ~20 mas at a position angle of ~280 degrees. This model can be interpreted as a system with a circum-companion disk and is consistent with the spectroscopic signatures of an accretion disk around an unseen companion recently discovered in the violet spectrum of BM Gem.

قيم البحث

اقرأ أيضاً

Balmer and Paschen continuum emission as well as Balmer series lines of P Cygni-type profile from H_gamma through H_23 are revealed in the violet spectra of BM Gem, a carbon star associated with an oxygen-rich circumstellar shell (`silicate carbon st ar) observed with the high dispersion spectrograph (HDS) on the Subaru telescope. The blue-shifted absorption in the Balmer lines indicates the presence of an outflow, the line of sight velocity of which is at least 400 km s^-1, which is the highest outflow velocity observed to date in a carbon star. We argue that the observed unusual features in BM Gem are strong evidence for the presence of a companion, which should form an accretion disk that gives rise to both an ionized gas region and a high velocity, variable outflow. The estimated luminosity of ~0.2 (0.03-0.6) L_sun for the ionized gas can be maintained by a mass accretion rate to a dwarf companion of ~10^-8 M_sun yr^-1, while ~10^-10 M_sun yr^-1 is sufficient for accretion to a white dwarf companion. These accretion rates are feasible for some detached binary configurations on the basis of the Bond-Hoyle type accretion process. We concluded that the carbon star BM Gem is in a detached binary system with a companion of low mass and low luminosity. However, we are unable to determine whether this companion object is a dwarf or a white dwarf. The upper limits for binary separation are 210 AU and 930 AU for a dwarf and a white dwarf, respectively. We also note that the observed features of BM Gem mimic those of Mira (omi Cet), which may suggest actual similarities in their binary configurations and circumstellar structures.
77 - Norman R. Trams 1999
We describe ISO observations of the obscured Asymptotic Giant Branch (AGB) star IRAS04496-6958 in the Large Magellanic Cloud (LMC). This star has been classified as a carbon star. Our new ISOCAM CVF spectra show that it is the first carbon star with silicate dust known outside of the Milky Way. The existence of this object, and the fact that it is one of the highest luminosity AGB stars in the LMC, provide important information for theoretical models of AGB evolution and understanding the origin of silicate carbon stars.
66 - F.J. Molster 2002
This is the second paper in a series of three in which we present an exhaustive inventory of the 49 solid state emission bands observed in a sample of 17 oxygen-rich dust shells surrounding evolved stars. Most of these emission bands are concentrated in well defined spectral regions (called complexes). We define 7 of these complexes; the 10, 18, 23, 28, 33, 40 and 60 micron complex. We derive average properties of the individual bands. Comparison with laboratory data suggests that both olivines (Mg(2x)Fe(2-2x)SiO(4)) and pyroxenes (Mg(x)Fe(1-x)SiO(3)) are present, with x close to 1, i.e. the minerals are very Mg-rich and Fe-poor. This composition is similar to that seen in disks surrounding young stars and in the solar system comet Hale-Bopp. A significant fraction of the emission bands cannot be identified with either olivines or pyroxenes. Possible other materials that may be the carriers of these unidentified bands are briefly discussed. There is a natural division into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). In particular, stars with the 33.5 micron olivine band stronger than about 20 percent over continuum are invariably disk sources. Likewise, the 60 micron region is dominated by crystalline silicates in the disk sources, while it is dominated by crystalline H(2)O ice in the outflow sources. We show that the disk and outflow sources have significant differences in the shape of the emission bands. This difference must be related to the composition or grain shapes of the dust particles. The incredible richness of the crystalline silicate spectra observed by ISO allows detailed studies of the mineralogy of these dust shells, and is the origin and history of the dust.
We report the detection of interstellar silicate dust in the z_abs=0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data we detect the 10 micron silicate abs orption feature with a detection significance of 10.7-sigma. We fit laboratory-derived silicate dust profile templates obtained from literature to the observed 10 micron absorption feature, and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of tau_10=0.49+/-0.02, which rises to tau_10~0.67+/-0.04 if the covering factor is taken into account. We also detected the 18 micron silicate absorption feature in our data with a >3-sigma significance. Due to the proximity of the 18 micron absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 micron, we do not independently fit this feature. We find, however, that the shape and depth of the 18 micron silicate absorption are well-matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 micron feature. The measured 10 micron peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. The reddening, 21-cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems, however. This high optical depth may be evidence for variations in dust grain properties in the ISM between this and the previously studied high redshift galaxies.
We present infrared multi-epoch observations of the dust forming nova V1280 Sco over $sim$2000 days from the outburst. The temporal evolution of the infrared spectral energy distributions at 1272, 1616 and 1947 days can be explained by the emissions produced by amorphous carbon dust of mass (6.6--8.7)$times$10$^{-8}$M$_{odot}$ with a representative grain size of 0.01$~mu$m and astronomical silicate dust of mass (3.4--4.3)$times$10$^{-7}$M$_{odot}$ with a representative grain size of 0.3--0.5$~mu$m. Both of these dust species travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs. The dust formation scenario around V1280 Sco suggested from our analyses is that the amorphous carbon dust is formed in the nova ejecta followed by the formation of silicate dust in the expanding nova ejecta or as a result of the interaction between the nova wind and the circumstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا