ﻻ يوجد ملخص باللغة العربية
We present infrared multi-epoch observations of the dust forming nova V1280 Sco over $sim$2000 days from the outburst. The temporal evolution of the infrared spectral energy distributions at 1272, 1616 and 1947 days can be explained by the emissions produced by amorphous carbon dust of mass (6.6--8.7)$times$10$^{-8}$M$_{odot}$ with a representative grain size of 0.01$~mu$m and astronomical silicate dust of mass (3.4--4.3)$times$10$^{-7}$M$_{odot}$ with a representative grain size of 0.3--0.5$~mu$m. Both of these dust species travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs. The dust formation scenario around V1280 Sco suggested from our analyses is that the amorphous carbon dust is formed in the nova ejecta followed by the formation of silicate dust in the expanding nova ejecta or as a result of the interaction between the nova wind and the circumstellar medium.
We present the first high spatial resolution monitoring of the dust forming nova V1280 Sco performed with the Very Large Telescope Interferometer (VLTI). Spectra and visibilities were obtained from the onset of the dust formation 23 days after discov
We present the results of our photometric and spectroscopic observations of Nova Sco 2007 N.1 (V1280 Sco). The photometric data was represented by a single data point in the light curve since the observation was carried out only for one night. The sp
V1280 Sco is one of the slowest dust-forming nova ever historically observed. We performed multi-epoch high-spatial resolution observations of the circumstellar dusty environment of V1280 Sco to investigate the level of asymmetry of the ejecta We obs
We discovered multiple high-velocity (ranging from -900 to -650 km/s) and narrow (FWHM = 15 km/s) absorption components corresponding to both the D2 and the D1 lines of Na I on a high dispersion spectrum of V1280 Sco observed on 2009 May 9 (UT), 814
The discovery that many classical novae produce detectable GeV $gamma$-ray emission has raised the question of the role of shocks in nova eruptions. Here we use radio observations of nova V809 Cep (Nova Cep 2013) with the Jansky Very Large Array to s