ﻻ يوجد ملخص باللغة العربية
The pendulum, in the presence of linear dissipation and a constant torque, is a non-integrable, nonlinear differential equation. In this paper, using the idea of rotated vector fields, derives the relation between the applied force $beta$ and the periodic solution, and a conclusion that the critical value of $beta$ is a fixed one in the over damping situation. These results are of practical significance in the study of charge-density waves in physics.
The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilberts 16th problem. To circumvent this ob
A 3D pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the uni
We construct a new invariant-the trunkenness-for volume-perserving vector fields on S^3 up to volume-preserving diffeomorphism. We prove that the trunkenness is independent from the helicity and that it is the limit of a knot invariant (called the trunk) computed on long pieces of orbits.
In order to analyze structure of tangent spaces of a transient orbit, we propose a new algorithm which pulls back vectors in tangent spaces along the orbit by using a calculation method of covariant Lyapunov vectors. As an example, the calculation al