ﻻ يوجد ملخص باللغة العربية
The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilberts 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. This paper is the continuation of the authors paper in [Mosc. Math. J. 1 (2001), no. 4] where the lower bound of the form 2^{cn^2} has been obtained. Here we obtain the upper bound of the same form. We also associate an equipped planar graph to every planar polynomial vector field, this graph is a complete invariant for orbital topological classification of such fields.
In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $epsilonrightarrow 0$. In slow-fast systems, the slow divergence-
In this work a theorical framework to apply the Poincare compactification technique to locally Lipschitz continuous vector fields is developed. It is proved that these vectors fields are compactifiable in the n-dimensional sphere, though the compacti
By applying a singular perturbation approach, canard limit cycles exhibited by a general family of singularly perturbed planar piecewise linear (PWL) differential systems are analyzed. The performed study involves both hyperbolic and non-hyperbolic c
In this paper, we study the bifurcate of limit cycles for Bogdanov-Takens system($dot{x}=y$, $dot{y}=-x+x^{2}$) under perturbations of piecewise smooth polynomials of degree $2$ and $n$ respectively. We bound the number of zeros of first order Melnik
We apply the averaging theory of high order for computing the limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. These discontinuous piecewise differential systems are formed by two either quadrat