ترغب بنشر مسار تعليمي؟ اضغط هنا

Ramsey-like measurement of the decoherence rate between Zeeman sub-levels

41   0   0.0 ( 0 )
 نشر من قبل Moshe Shuker
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-photon processes that involve different sub-levels of the ground state of an atom, are highly sensitive to depopulation and decoherence within the ground state. For example, the spectral width of electromagnetically induced transparency resonances in $Lambda-$type system, are strongly affected by the ground state depopulation and decoherence rates. We present a direct measurement of decay rates between hyperfine and Zeeman sub-levels in the ground state of $^{87}$Rb vapor. Similar to the relaxation-in-the-dark technique, pumping lasers are used to pre-align the atomic vapor in a well defined quantum state. The free propagation of the atomic state is monitored using a Ramsey-like method. Coherence times in the range 1-10 ms were measured for room temperature atomic vapor. In the range of the experimental parameters used in this study, the dominant process inducing Zeeman decoherence is the spin-exchange collisions between rubidium atoms.

قيم البحث

اقرأ أيضاً

Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sub-levels of erbium ions that are doped into a lithium niobate waveguide, finding population lifetimes at cryogenic temperatures as long as seconds. Then, using these levels, we prepare and characterize atomic frequency combs, which can serve as a memory for quantum light at 1532 nm wavelength. The results allow predicting a 0.1% memory efficiency, mainly limited by unwanted background absorption that we conjecture to be caused by the coupling between two-level systems (TLS) and erbium spins. Hence, while it should be possible to create an AFC-based quantum memory in Er$^{3+}$:Ti$^{3+}$:LiNbO$_3$, improved crystal growth together with optimized AFC preparation will be required to make it suitable for applications in quantum communication.
We demonstrate that Zeeman ground-state spin levels in Nd3+:YVO4 provides the possibility to create an efficient lambda-system for optical pumping experiments. The branching ratio R in the lambda-system is measured experimentally via absorption spect roscopy and is compared to a theoretical model. We show that R can be tuned by changing the orientation of the magnetic field. These results are applied to optical pumping experiments, where significant improvement is obtained compared to previous experiments in this system. The tunability of the branching ratio in combination with its good coherence properties and the high oscillator strength makes Nd3+:YVO4 an interesting candidate for various quantum information protocols.
Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for stora ge times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.
It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modeled by an amplitude dampi ng channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomena fails in the case of a quantum key distribution protocol. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment.
A multi-slit interference experiment, with which-way detectors, in the presence of environment induced decoherence, is theoretically analyzed. The effect of environment is modeled via a coupling to a bath of harmonic oscillators. Through an exact ana lysis, an expression for $mathcal{C}$, a recently introduced measure of coherence, of the particle at the detecting screen is obtained as a function of the parameters of the environment. It is argued that the effect of decoherence can be quantified using the measured coherence value which lies between zero and one. For the specific case of two slits, it is shown that the decoherence time can be obtained from the measured value of the coherence, $mathcal{C}$, thus providing a novel way to quantify the effect of decoherence via direct measurement of quantum coherence. This would be of significant value in many current studies that seek to exploit quantum superpositions for quantum information applications and scalable quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا