ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent atomic frequency comb based on Zeeman sub-levels of an erbium-doped crystal waveguide

123   0   0.0 ( 0 )
 نشر من قبل Mohsen Falamarzi Askarani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sub-levels of erbium ions that are doped into a lithium niobate waveguide, finding population lifetimes at cryogenic temperatures as long as seconds. Then, using these levels, we prepare and characterize atomic frequency combs, which can serve as a memory for quantum light at 1532 nm wavelength. The results allow predicting a 0.1% memory efficiency, mainly limited by unwanted background absorption that we conjecture to be caused by the coupling between two-level systems (TLS) and erbium spins. Hence, while it should be possible to create an AFC-based quantum memory in Er$^{3+}$:Ti$^{3+}$:LiNbO$_3$, improved crystal growth together with optimized AFC preparation will be required to make it suitable for applications in quantum communication.



قيم البحث

اقرأ أيضاً

We demonstrate efficient and reversible mapping of a light field onto a thulium-doped crystal using an atomic frequency comb (AFC). Thanks to an accurate spectral preparation of the sample, we reach an efficiency of 9%. Our interpretation of the data is based on an original spectral analysis of the AFC. By independently measuring the absorption spectrum, we show that the efficiency is both limited by the available optical thickness and the preparation procedure at large absorption depth for a given bandwidth. The experiment is repeated with less than one photon per pulse and single photon counting detectors. We clearly observe that the AFC protocol is compatible with the noise level required for weak quantum field storage.
We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.
We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states o f trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers based on electron beam lithography and inductively coupled plasma reactive ion etching. A net internal gain of ~30 dB/cm in communication band was achieved in the fabricated waveguide amplifiers under the pump of a 974-nm continuous laser. This work develops new active devices on LNOI and will promote the development of LNOI integrated photonics.
We suggest an all-optical scheme for the storage, retrieval and processing of a single-photon wave packet through its off-resonant Raman interaction with a series of coherent control beams. These control beams, each with distinct carrier frequency, a re distributed along the way of single-photon propagation, thus effectively forming a gradient absorption structure which can be controlled in various ways to achieve different single-photon processing functionalities. Such a controllable frequency comb is a hybrid of Raman, gradient echo memory (GEM) and atomic frequency comb (AFC) methods, therefore demonstrates many of their advantages all together in one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا