ترغب بنشر مسار تعليمي؟ اضغط هنا

On Probability Distributions for Trees: Representations, Inference and Learning

67   0   0.0 ( 0 )
 نشر من قبل Marc Tommasi
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study probability distributions over free algebras of trees. Probability distributions can be seen as particular (formal power) tree series [Berstel et al 82, Esik et al 03], i.e. mappings from trees to a semiring K . A widely studied class of tree series is the class of rational (or recognizable) tree series which can be defined either in an algebraic way or by means of multiplicity tree automata. We argue that the algebraic representation is very convenient to model probability distributions over a free algebra of trees. First, as in the string case, the algebraic representation allows to design learning algorithms for the whole class of probability distributions defined by rational tree series. Note that learning algorithms for rational tree series correspond to learning algorithms for weighted tree automata where both the structure and the weights are learned. Second, the algebraic representation can be easily extended to deal with unranked trees (like XML trees where a symbol may have an unbounded number of children). Both properties are particularly relevant for applications: nondeterministic automata are required for the inference problem to be relevant (recall that Hidden Markov Models are equivalent to nondeterministic string automata); nowadays applications for Web Information Extraction, Web Services and document processing consider unranked trees.

قيم البحث

اقرأ أيضاً

Finding a good way to model probability densities is key to probabilistic inference. An ideal model should be able to concisely approximate any probability, while being also compatible with two main operations: multiplications of two models (product rule) and marginalization with respect to a subset of the random variables (sum rule). In this work, we show that a recently proposed class of positive semi-definite (PSD) models for non-negative functions is particularly suited to this end. In particular, we characterize both approximation and generalization capabilities of PSD models, showing that they enjoy strong theoretical guarantees. Moreover, we show that we can perform efficiently both sum and product rule in closed form via matrix operations, enjoying the same versatility of mixture models. Our results open the way to applications of PSD models to density estimation, decision theory and inference. Preliminary empirical evaluation supports our findings.
Nearest neighbor (kNN) methods have been gaining popularity in recent years in light of advances in hardware and efficiency of algorithms. There is a plethora of methods to choose from today, each with their own advantages and disadvantages. One requ irement shared between all kNN based methods is the need for a good representation and distance measure between samples. We introduce a new method called differentiable boundary tree which allows for learning deep kNN representations. We build on the recently proposed boundary tree algorithm which allows for efficient nearest neighbor classification, regression and retrieval. By modelling traversals in the tree as stochastic events, we are able to form a differentiable cost function which is associated with the trees predictions. Using a deep neural network to transform the data and back-propagating through the tree allows us to learn good representations for kNN methods. We demonstrate that our method is able to learn suitable representations allowing for very efficient trees with a clearly interpretable structure.
144 - Soheil Kolouri , Yang Zou , 2015
Optimal transport distances, otherwise known as Wasserstein distances, have recently drawn ample attention in computer vision and machine learning as a powerful discrepancy measure for probability distributions. The recent developments on alternative formulations of the optimal transport have allowed for faster solutions to the problem and has revamped its practical applications in machine learning. In this paper, we exploit the widely used kernel methods and provide a family of provably positive definite kernels based on the Sliced Wasserstein distance and demonstrate the benefits of these kernels in a variety of learning tasks. Our work provides a new perspective on the application of optimal transport flavored distances through kernel methods in machine learning tasks.
186 - Jun Han , Fan Ding , Xianglong Liu 2020
Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly appl ied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.
We consider the problem of identifying universal low-dimensional features from high-dimensional data for inference tasks in settings involving learning. For such problems, we introduce natural notions of universality and we show a local equivalence a mong them. Our analysis is naturally expressed via information geometry, and represents a conceptually and computationally useful analysis. The development reveals the complementary roles of the singular value decomposition, Hirschfeld-Gebelein-Renyi maximal correlation, the canonical correlation and principle component analyses of Hotelling and Pearson, Tishbys information bottleneck, Wyners common information, Ky Fan $k$-norms, and Brieman and Friedmans alternating conditional expectations algorithm. We further illustrate how this framework facilitates understanding and optimizing aspects of learning systems, including multinomial logistic (softmax) regression and the associated neural network architecture, matrix factorization methods for collaborative filtering and other applications, rank-constrained multivariate linear regression, and forms of semi-supervised learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا