ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the study of a geometric flow whose law involves a singular integral operator. This operator is used to define a non-local mean curvature of a set. Moreover the associated flow appears in two important applications: dislocation dynamics and phase field theory for fractional reaction-diffusion equations. It is defined by using the level set method. The main results of this paper are: on one hand, the proper level set formulation of the geometric flow; on the other hand, stability and comparison results for the geometric equation associated with the flow.
We show the consistency of a threshold dynamics type algorithm for the anisotropic motion by fractional mean curvature, in the presence of a time dependent forcing term. Beside the consistency result, we show that convex sets remain convex during the
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation.
The aim of this paper is to establish an abstract theory based on the so-called fractional-maximal distribution functions (FMDs). From the rough ideas introduced in~cite{AM2007}, we develop and prove some abstract results related to the level-set ine
In this paper, we derive a priori interior Hessian estimates for Lagrangian mean curvature equation if the Lagrangian phase is supercritical and has bounded second derivatives.
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the p