ﻻ يوجد ملخص باللغة العربية
For a $G$-variety $X$ with an open orbit, we define its boundary $partial X$ as the complement of the open orbit. The action sheaf $S_X$ is the subsheaf of the tangent sheaf made of vector fields tangent to $partial X$. We prove, for a large family of smooth spherical varieties, the vanishing of the cohomology groups $H^i(X,S_X)$ for $i>0$, extending results of F. Bien and M. Brion. We apply these results to study the local rigidity of the smooth projective varieties with Picard number one classified in a previous paper of the first author.
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
Let $n$ be a positive integer. The main result of this manuscript is a construction of a filtration on the cohomology ring of a regular nilpotent Hessenberg variety in $GL(n,{mathbb{C}})/B$ such that its associated graded ring has graded pieces (i.e.
In this paper we construct an additive basis for the cohomology ring of a regular nilpotent Hessenberg variety which is obtained by extending all Poincare duals of smaller regular nilpotent Hessenberg varieties. In particular, all of the Poincare dua
Let $n$ be a fixed positive integer and $h: {1,2,ldots,n} rightarrow {1,2,ldots,n}$ a Hessenberg function. The main results of this paper are twofold. First, we give a systematic method, depending in a simple manner on the Hessenberg function $h$, fo
Regular semisimple Hessenberg varieties are subvarieties of the flag variety $mathrm{Flag}(mathbb{C}^n)$ arising naturally in the intersection of geometry, representation theory, and combinatorics. Recent results of Abe-Horiguchi-Masuda-Murai-Sato an