ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing jet--ISM interaction in young AGN: correlations between [OIII] 5007 and 5-GHz emission

50   0   0.0 ( 0 )
 نشر من قبل Alvaro Labiano
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Labiano




اسأل ChatGPT حول البحث

*AIMS: To study the interaction between young AGN and their host galaxies based on their ionized gas and radio emission, and to analyze possible implications for the radio galaxy evolution. *METHODS: The [OIII] 5007 line and 5-GHz radio properties are compared and studied on a large, representative sample of GPS and CSS (i.e., young) quasars and radio galaxies as well as large-scale sources using [OIII] 5007 line and 5-GHz radio data from literature and our observations. *RESULTS: Several correlations between the [OIII] 5007 line and 5-GHz radio emission have been found. The main result is that the [OIII] 5007 emission is strongly related to the GPS/CSS source size indicating that the [OIII] 5007 emission is clearly enhanced by the jet expansion through the host galaxy ISM. Shocks are the most likely enhancing mechanism, although jet-induced star formation could also be, partly, responsible for the [OIII] 5007 emission. The data also suggests a possible deceleration of the jet as it grows. In this case, however, the correlation is weak.

قيم البحث

اقرأ أيضاً

109 - A. Labiano 2008
I have compiled observations of [OIII] 5007 line and 5GHz radio emission for a large sample of GPS, CSS and FR sources. Several properties were studied and compared. The most relevant findings are that the FWHM and the luminosity of the [OIII] 5007 l ine are correlated with the size of the radio source. I present the data and discuss the correlations, with special focus on jet-host interaction, triggering and enhancing of [OIII] 5007 emission.
112 - Kai Zhang 2011
We use homogeneous samples of radio-quiet Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the connection between the velocity shift and the equivalent width (EW) of the [OIII] 5007 emission line, and their correl ations with physical parameters of active galactic nuclei (AGNs). We find a significant and negative correlation between the EW of the core component, EW(core), and the blueshift of either the core (the peak), the wing, or the total profile of [OIII] emission; it is fairly strong for the blueshift of the total profile particularly. However, both quantities (EW and velocity shift) generally have only weak, if any, correlations with fundamental AGN parameters such as the nuclear continuum luminosity at 5100 L_{5100}, black hole mass (M_{BH}), and the Eddington ratio (L/L_{Edd}); these correlations include the classical Baldwin effect of EW(core), an inverse Baldwin effect of EW(wing), and the relationship between velocity shifts and lratio. Our findings suggest that both the large object-to-object variation in the strength of [OIII] emission and the blueshift--EW(core) connection are not governed primarily by fundamental AGN parameters such as L_{5100}, M_{BH} and L/L_{Edd}. We propose that the ISM conditions of the host galaxies play a major role instead in the diversity of the [OIII] properties in active galaxies. This suggests that the use of[OIII] 5007 luminosity as proxy of AGN luminosity does not depend strongly on the above-mentioned fundamental AGN parameters.
We present the discovery of [OIII] 5007 emission associated with the black hole X-ray binary recently identified in a globular cluster in the Virgo elliptical galaxy NGC 4472. This object is the first confirmed black-hole X-ray binary in a globular c luster. The identification of [OIII] 5007 emission from the black-hole hosting globular cluster is based on two independent fiber spectra obtained at the VLT with FLAMES, which cover a wavelength range of 5000-5800 Angstrom at a spectral resolution of about 6000. In each of these spectra we find an emission line at 5031.2 Angstrom with an uncertainty of several tenths of an Angstrom. These are consistent with [OIII] 5007 emission at the 1475 +/- 7 km/s radial velocity of the globular cluster previously determined from an analysis of its absorption lines. This agreement within the small uncertainties argues strongly in favor of the interpretation of the line as [OIII] 5007 emission from the black-hole hosting globular cluster. We also find that the emission line most likely has a velocity width of several hundred km/s. Such a velocity width rules out a planetary nebula explanation for the [OIII] 5007 emission and implicates the black hole as the source of the power driving the nebular emission.
The spectra of active galactic nuclei usually exhibit wings in some emission lines, such as [OIII]$lambdalambda$5007,4959, with these wings generally being blueshifted and related to strong winds and outflows. The aim of this work was to analyse the [OIII] emission lines in broad line Seyfert 1 (BLS1) galaxies in order to detect the presence of wings, and to study the [OIII] line properties and their possible connection with the central engine. In addition, we attempted to compare the black hole mass distribution in both BLS1 galaxies with symmetric and blue-asymmetric [OIII] profiles. For this purpose, we carried out a spectroscopic study of a sample of 45 nearby southern BLS1 galaxies from the 6 Degree Field Galaxy survey. The [OIII] emission lines were well fitted using a single Gaussian function in 23 galaxies, while 22 objects presented a wing component and required a double-Gaussian decomposition. By computing the radial velocity difference between the wing and core centroids (i.e. $Delta$v), we found 18 galaxies exhibiting blueshifted wings, 2 objects presenting red wings and 2 galaxies showing symmetric wings ($Delta$v$= 0$). Moreover, $Delta$v was slightly correlated with the black hole mass. In addition, we computed the radial velocity difference of the blue-side full extension of the wing relative to the centroid of the core component through the emph{blue emission} parameter, which revealed a correlation with black hole mass, in agreement with previous results reported for narrow line galaxies. Finally, in our sample, similar black hole mass distributions were observed in both BLS1 galaxies with symmetric and blueshifted asymmetric [OIII] profiles.
We present a Hubble Space Telescope (HST) survey of extended [O III] {lambda}5007 emission for a sample of 12 nearby (z < 0.12), luminous Type 2 quasars (QSO2s), which we use to measure the extent and kinematics of their AGN-ionized gas. We find the size of the observed [O III] regions scale with luminosity in comparison to nearby, less luminous Seyfert galaxies and radially outflowing kinematics to exist in all targets. We report an average maximum outflow radius of $sim$600 pc, with gas continuing to be kinematically influenced by the central AGN out to an average radius of $sim$1130 pc. These findings question the effectiveness of AGN being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission-lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا