ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Observations of Extended [O III] {lambda}5007 Emission in Nearby QSO2s: New Constraints On AGN / Host Galaxy Interaction

109   0   0.0 ( 0 )
 نشر من قبل Travis Fischer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Hubble Space Telescope (HST) survey of extended [O III] {lambda}5007 emission for a sample of 12 nearby (z < 0.12), luminous Type 2 quasars (QSO2s), which we use to measure the extent and kinematics of their AGN-ionized gas. We find the size of the observed [O III] regions scale with luminosity in comparison to nearby, less luminous Seyfert galaxies and radially outflowing kinematics to exist in all targets. We report an average maximum outflow radius of $sim$600 pc, with gas continuing to be kinematically influenced by the central AGN out to an average radius of $sim$1130 pc. These findings question the effectiveness of AGN being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission-lines.

قيم البحث

اقرأ أيضاً

We use Hubble Space Telescope (HST)/ Space Telescope Imaging Spectrograph (STIS) long-slit G430M and G750M spectra to analyse the extended [O~III] 5007A emission in a sample of twelve nearby (z < 0.12) luminous (L_bol > 1.6 x 10^45 erg s^-1) QSO2s. T he purpose of the study is to determine the properties of the mass outflows of ionised gas and their role in AGN feedback. We measure fluxes and velocities as functions of radial distances. Using Cloudy models and ionising luminosities derived from [O~III] 5007A, we are able to estimate the densities for the emission-line gas. From these results, we derive masses of [O~III]-emitting gas, mass outflow rates, kinetic energies, kinetic luminosities, momenta and momentum flow rates as a function of radial distance for each of the targets. For the sample, masses are several times 10^3 - 10^7 solar masses and peak outflow rates are 9.3 x 10^-3 Msun/yr to 10.3 Msun/yr. The peak kinetic luminosities are 3.4 x 10^-8 to 4.9 x 10^-4 of the bolometric luminosity, which does not approach the 5.0 x 10^-3 - 5.0 x 10^-2 range required by some models for efficient feedback. For Mrk 34, which has the largest kinetic luminosity of our sample, in order to produce efficient feedback there would have to be 10 times more [O~III]-emitting gas than we detected at its position of maximum kinetic luminosity. Three targets show extended [O~III] emission, but compact outflow regions. This may be due to different mass profiles or different evolutionary histories.
We present a dynamical study of the narrow-line regions in two nearby QSO2s. We construct dynamical models based on detailed photoionization models of the emission-line gas, including the effects of internal dust, to apply to observations of large-sc ale outflows from these AGNs. We use Mrk 477 and Mrk 34 in order to test our models against recent HST STIS observations of [O III] emission-line kinematics since these AGNs possess more energetic outflows than found in Seyfert galaxies. We find that the outflows within 500 pc are consistent with radiative acceleration of dusty gas, however, the outflows in Mrk 34 are significantly more extended and may not be directly accelerated by radiation. We characterize the properties of X-ray winds found from the expansion of [O III]-emitting gas close to the black hole. We show that such winds possess the kinetic energy density to disturb [O III] gas at 1.8 kpc, and have sufficient energy to entrain the [O III] clouds at 1.2 kpc. Assuming that the X-ray wind possesses the same radial mass distribution as the [O III] gas, we find that the peak kinetic luminosity for this wind is 2% of Mrk 34s bolometric luminosity, which is in the 0.5% - 5% range required by some models for efficient feedback. Our work shows that, although the kinetic luminosity as measured from [O III]-emitting gas is frequently low, X-ray winds may provide more than one order of magnitude higher kinetic power.
We present a deep Hubble Space Telescope (HST) imaging study of two dwarf galaxies in the halos of Local Volume Large Magellanic Cloud (LMC) analogs. These dwarfs were discovered as part of our Subaru+Hyper Suprime-Cam MADCASH survey: MADCASH-1, whic h is a satellite of NGC 2403 (D~3.2 Mpc), and MADCASH-2, a previously unknown dwarf galaxy near NGC 4214 (D~3.0 Mpc). Our HST data reach >3.5 mag below the tip of the red giant branch (TRGB) of each dwarf, allowing us to derive their structural parameters and assess their stellar populations. We measure TRGB distances ($D=3.41^{+0.24}_{-0.23}$ Mpc for MADCASH-1, and $D=3.00^{+0.13}_{-0.15}$ Mpc for MADCASH-2), and confirm their associations with their host galaxies. MADCASH-1 is a predominantly old, metal-poor stellar system (age ~13.5 Gyr, [M/H] ~ -2.0), similar to many Local Group dwarfs. Modelling of MADCASH-2s CMD suggests that it contains mostly ancient, metal-poor stars (age ~13.5 Gyr, [M/H] ~ -2.0), but that ~10% of its stellar mass was formed 1.1--1.5 Gyr ago, and ~1% was formed 400--500 Myr ago. Given its recent star formation, we search MADCASH-2 for neutral hydrogen using the Green Bank Telescope, but find no emission and estimate an upper limit on the HI mass of $<4.8times10^4 M_{odot}$. These are the faintest dwarf satellites known around host galaxies of LMC mass outside the Local Group ($M_{V,text{MADCASH-1}}=-7.81pm0.18$, $M_{V,text{MADCASH-2}}=-9.15pm0.12$), and one of them shows signs of recent environmental quenching by its host. Once the MADCASH survey for faint dwarf satellites is complete, our census will enable us to test CDM predictions for hierarchical structure formation, and discover the physical mechanisms by which low-mass hosts influence the evolution of their satellites.
We present a study of 21 dark gamma-ray burst (GRB) host galaxies, predominantly using X-ray afterglows obtained with the Chandra X-Ray Observatory (CXO) to precisely locate the burst in deep Hubble Space Telescope (HST) imaging of the burst region. The host galaxies are well-detected in F160W in all but one case and in F606W imaging in approx 60 per cent of cases. We measure magnitudes and perform a morphological analysis of each galaxy. The asymmetry, concentration and ellipticity of the dark burst hosts are compared against the host galaxies of optically bright GRBs. In agreement with other studies, we find that dark GRB hosts are redder and more luminous than the bulk of the GRB host population. The distribution of projected spatial offsets for dark GRBs from their host galaxy centroids is comparable to that of optically-bright bursts. The dark GRB hosts are physically larger, more massive and redder, but are morphologically similar to the hosts of bright GRBs in terms of concentration and asymmetry. Our analysis constrains the fraction of high redshift (z greater than 5) GRBs in the sample to approx 14 per cent, implying an upper limit for the whole long-GRB population of less than 4.4 per cent. If dust is the primary cause of afterglow darkening amongst dark GRBs, the measured extinction may require a clumpy dust component in order to explain the observed offset and ellipticity distributions.
We analyse newly obtained Hubble Space Telescope (HST) imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1 which has a well resolved source, we break the mass-vs-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 $pm$ 0.15 $times$ 10$^{10}$ M$_{odot}$, a 7 per cent increase on the previous estimate. For SNL-2 the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible AGN microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2s nearby companion galaxy, measuring a lensing mass of 12.59 $pm$ 0.30 $times$ 10$^{10}$ M$_{odot}$, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 $pm$ 0.09 and 0.96 $pm$ 0.10 for SNL-1 and SNL-2, relative to a Milky-Way like (Kroupa) initial mass function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا