ﻻ يوجد ملخص باللغة العربية
We deal with a class of abstract nonlinear stochastic models, which covers many 2D hydrodynamical models including 2D Navier-Stokes equations, 2D MHD models and 2D magnetic Benard problem and also some shell models of turbulence. We first prove the existence and uniqueness theorem for the class considered. Our main result is a Wentzell-Freidlin type large deviation principle for small multiplicative noise which we prove by weak convergence method.
In this paper we study a stochastic version of an inviscid shell model of turbulence with multiplicative noise. The deterministic counterpart of this model is quite general and includes inviscid GOY and Sabra shell models of turbulence. We prove glob
In this paper, to cope with the shortage of sufficient theoretical support resulted from the fast-growing quantitative financial modeling, we investigate two classes of generalized stochastic volatility models, establish their well-posedness of stron
A large deviation principle is derived for stochastic partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic part
We consider the stochastic electrokinetic flow in a smooth bounded domain $mathcal{D}$, modelled by a Nernst-Planck-Navier-Stokes system with a blocking boundary conditions for ionic species concentrations, perturbed by multiplicative noise. Several
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. T