ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism in Graphene Systems

46   0   0.0 ( 0 )
 نشر من قبل Zhenyu Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene has attracted a great interest in material science due to its novel electronic structrues. Recently, magnetism discovered in graphene based systems opens the possibility of their spintronics application. This paper provides a comprehensive review on the magnetic behaviors and electronic structures of graphene systems, including 2-dimensional graphene, 1-dimensional graphene nanoribbons, and 0-dimensional graphene nanoclusters. Theoretical research suggests that such metal-free magnetism mainly comes from the localized states or edges states. By applying external electric field, or by chemical modification, we can turn the zigzag nanoribbon systems to half metal, thus obtain a perfect spin filter.


قيم البحث

اقرأ أيضاً

We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene syste ms with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.
148 - Chi Vo-Van 2011
The structure and magnetic properties of Co clusters, comprising from 26 to 2700 atoms, self-organized or not on the graphene/Ir(111) moire, were studied in situ with the help of scanning tunneling microscopy and X-ray magnetic circular dichroism. Su rprisingly the small clusters have almost no magnetic anisotropy. We find indication for a magnetic coupling between the clusters. Experiments have to be performed carefully so as to avoid cluster damage by the soft X-rays.
84 - M. Crisan , I. Grosu , 2016
We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depe nd on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the $^{13}$C active nuclei in graphene samples.
Evidence of flat-band magnetism and half-metallicity in compressed twisted bilayer graphene is provided with first-principles calculations. We show that dynamic band-structure engineering in twisted bilayer graphene is possible by controlling the che mical composition with extrinsic doping, the interlayer coupling strength with pressure, and the magnetic ordering with external electric field. By varying the rotational order and reducing the interlayer separation an unbalanced distribution of charge density resulting in the spontaneous apparition of localized magnetic moments without disrupting the structural integrity of the bilayer. Weak exchange correlation between magnetic moments is estimated in large unit cells. External electric field switches the local magnetic ordering from ferromagnetic to anti-ferromagnetic. Substitutional doping shifts the chemical potential of one spin distribution and leads to half-metallicity. Flakes of compressed twisted bilayer graphene exhibit spontaneous magnetization, demonstrating that correlation between magnetic moments is not a necessary condition for their formation.
Atomic defects have a significant impact in the low-energy properties of graphene systems. By means of first-principles calculations and tight-binding models we provide evidence that chemical impurities modify both the normal and the superconducting states of twisted bilayer graphene. A single hydrogen atom attached to the bilayer surface yields a triple-point crossing, whereas self-doping and three-fold symmetry-breaking are created by a vacant site. Both types of defects lead to time-reversal symmetry-breaking and the creation of local magnetic moments. Hydrogen-induced magnetism is found to exist also at the doping levels where superconductivity appears in magic angle graphene superlattices. As a result, the coexistence of superconducting order and defect-induced magnetism yields in-gap Yu-Shiba-Rusinov excitations in magic angle twisted bilayer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا