ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity-induced magnetism in transition-metal substituted graphene

133   0   0.0 ( 0 )
 نشر من قبل Jason Haraldsen Ph.D
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.



قيم البحث

اقرأ أيضاً

To understand the band bending caused by metal contacts, we study the potential and charge density induced in graphene in response to contact with a metal strip. We find that the screening is weak by comparison with a normal metal as a consequence of the ultra-relativistic nature of the electron spectrum near the Fermi energy. The induced potential decays with the distance from the metal contact as x^{-1/2} and x^{-1} for undoped and doped graphene, respectively, breaking its spatial homogeneity. In the contact region the metal contact can give rise to the formation of a p-p, n-n, p-n junction (or with additional gating or impurity doping, even a p-n-p junction) that contributes to the overall resistance of the graphene sample, destroying its electron-hole symmetry. Using the work functions of metal-covered graphene recently calculated by Khomyakov et al. [Phys. Rev. B 79, 195425 (2009)] we predict the boundary potential and junction type for different metal contacts.
Dynamical multiferroicity features entangled dynamic orders: fluctuating electric dipoles induce magnetization. Hence, the material with paraelectric fluctuations can develop magnetic signatures if dynamically driven. We identify the paraelectric KTa O$_3$ (KTO) as a prime candidate for the observation of the dynamical multiferroicity. We show that when a KTO sample is exposed to a circularly polarized laser pulse, the dynamically induced ionic magnetic moments are of the order of 5% of the nuclear magneton per unit cell. We determine the phonon spectrum using ab initio methods and identify T$_{1u}$ as relevant soft phonon modes that couple to the external field and induce magnetic polarization. We also predict a corresponding electron effect for the dynamically induced magnetic moment which is enhanced by several orders of magnitude due to the significant mass difference between electron and ionic nucleus.
We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore , it cannot be explained by the established mechanisms of magnetic coupling across nonmagnetic spacers. We show that the experimental results are consistent with the presence of magnetism induced in Pt in proximity to ferromagnets, in direct analogy to the well-known proximity effects in superconductivity.
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magneti c field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T. This enables the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.
256 - Yijie Zeng , Luyang Wang , Song Li 2019
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI$_3$/SnI$_3$/CrI$_3$ trilayer structure. From first-principles calculations, the BiI$_3$-type SnI$_3$ monolayer without spin-orbit coupling has Dirac cones at t he corners of the hexagonal Brillouin zone. With spin-orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing $Z_2$ invariant and an effective model from symmetry considerations. Without spin-orbit coupling, the Dirac points are protected if the CrI$_3$ layers are stacked ferromagnetically, and are gapped if the CrI$_3$ layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups $C_{3i}^1$ and $C_{3i}^1(C_3^1)$, corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin-orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا