ترغب بنشر مسار تعليمي؟ اضغط هنا

Axion Cosmology and the Energy Scale of Inflation

39   0   0.0 ( 0 )
 نشر من قبل Mark Hertzberg
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey observational constraints on the parameter space of inflation and axions and map out two allowed windows: the classic window and the inflationary anthropic window. The cosmology of the latter is particularly interesting; inflationary axion cosmology predicts the existence of isocurvature fluctuations in the CMB, with an amplitude that grows with both the energy scale of inflation and the fraction of dark matter in axions. Statistical arguments favor a substantial value for the latter, and so current bounds on isocurvature fluctuations imply tight constraints on inflation. For example, an axion Peccei-Quinn scale of 10^16 GeV excludes any inflation model with energy scale > 3.8*10^14 GeV (r > 2*10^(-9)) at 95% confidence, and so implies negligible gravitational waves from inflation, but suggests appreciable isocurvature fluctuations.

قيم البحث

اقرأ أيضاً

We present two scale invariant models of inflation in which the addition of quadratic in curvature terms in the usual Einstein-Hilbert action, in the context of Palatini formulation of gravity, manages to reduce the value of the tensor-to-scalar rati o. In both models the Planck scale is dynamically generated via the vacuum expectation value of the scalar fields.
57 - Lotfi Boubekeur 2013
Effective field theory is a powerful organizing principle that allows to describe physics below a certain scale model-independently. Above that energy scale, identified with the cutoff, the EFT description breaks down and new physics is expected to a ppear, as confirmed in many familiar examples in quantum field theory. In this work, we examine the validity of effective field theory methods applied to inflation. We address the issue of whether Planck-suppressed non-renormalizable interactions are suppressed enough to be safely neglected when computing inflationary predictions. We focus on non-derivative non-renormalizable operators and estimate the cutoff that should suppress them using two independent approaches: (i) the usual unitarity and perturbativity argument, (ii) by computing the UV-divergent part of the inflaton entropy, known to scale as the square of the UV-cutoff. We find that in the absence of gravity (decoupling limit) the cutoff appears to depends linearly on the total inflaton excursion. On the other hand, once gravity is restored, the cutoff is brought back to the Planck scale. These results suggest that inflationary scenarios with super-Planckian excursion are not natural from the EFT viewpoint.
In this letter, we elaborate further on a Cosmological Running-Vacuum type model for the Universe, suggested previously by the authors within the context of a string-inspired effective theory in the presence of a Kalb-Ramond (KR) gravitational axion field which descends from the antisymmetric tensor of the massless gravitational string multiplet. In the presence of this field, which has anomalous CP violating interactions with the gravitons, primordial gravitational waves induce gravitational anomalies, which in turn are responsible for the appearance of $H^2$ and $H^4$ contributions to the vacuum energy density, these terms being characteristic of generic running-vacuum-model (RVM) type, where $H$ is the Hubble parameter. In this work we prove in detail the appearance of the $H^4$ terms due to gravitational-anomaly-induced condensates in the energy density of the primordial Universe, which can self-consistently induce inflation, and subsequent exit from it, according to the generic features of RVM. We also argue in favour of the robustness of our results, which were derived within an effective low-energy field theory approach, against Ultra Violet completion of the theory. During the radiation and matter-dominated eras, gravitational anomalies cancel, as required for the consistency of the quantum matter/radiation field theory. However, chiral and QCD-axion-type anomalies survive and have important consequences for both cosmic magnetogenesis and axionic dark matter in the Universe. Finally, the stringy RVM scenario presented here predicts quintessence-like dynamical dark energy for the current Universe, which is compatible with the existing fitting analyses of such model against observations
In present article we consider an axion F(R) gravity model and described with the help of holographic principle the cosmological models of viscous dark fluid coupled with axion matter in a spatially flat Friedmann-Robertson-Walker (FRW) universe. Thi s description based on generalized infrared-cutoff holographic dark energy, proposed by Nojiri and Odintsov. We explored the Little Rip, the Pseudo Rip, and the power-law bounce cosmological models in terms of the parameters of the inhomogeneous equation of the state of viscous dark fluid and calculated the infrared cutoffs analytically. We represented the energy conservation equation for the dark fluid from a holographic point of view and showed a correspondence between the cosmology of a viscous fluid and holographic cosmology. We analyzed the autonomous dynamic system. In the absence of interaction between fluids, solutions are obtained corresponding to two cases. In the first case, dark energy is missing and the extension describes the component of dark matter. The second case corresponds to cosmological models with an extension due to dark energy. The solutions obtained are investigated for stability. For a cosmological model with the interaction of a special type, the stability of solutions of the dynamic system is also investigated.
We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explos ive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual delta-N formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10^{-54} on cosmological scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا