ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Scale of New Physics in Inflation

97   0   0.0 ( 0 )
 نشر من قبل Lotfi Boubekeur
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lotfi Boubekeur




اسأل ChatGPT حول البحث

Effective field theory is a powerful organizing principle that allows to describe physics below a certain scale model-independently. Above that energy scale, identified with the cutoff, the EFT description breaks down and new physics is expected to appear, as confirmed in many familiar examples in quantum field theory. In this work, we examine the validity of effective field theory methods applied to inflation. We address the issue of whether Planck-suppressed non-renormalizable interactions are suppressed enough to be safely neglected when computing inflationary predictions. We focus on non-derivative non-renormalizable operators and estimate the cutoff that should suppress them using two independent approaches: (i) the usual unitarity and perturbativity argument, (ii) by computing the UV-divergent part of the inflaton entropy, known to scale as the square of the UV-cutoff. We find that in the absence of gravity (decoupling limit) the cutoff appears to depends linearly on the total inflaton excursion. On the other hand, once gravity is restored, the cutoff is brought back to the Planck scale. These results suggest that inflationary scenarios with super-Planckian excursion are not natural from the EFT viewpoint.



قيم البحث

اقرأ أيضاً

We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explos ive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual delta-N formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10^{-54} on cosmological scales.
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{rm NL}^{rm loc}$ ($f_{rm NL}^{rm eq}$), natural target levels of sensitivity are $Delta f_{rm NL}^{rm loc, eq.} simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
In the context of single field inflation, models with a quadratic potential and models with a natural potential with subplanckian decay constant are in tension with the Planck data. We show that, when embedded in a two-field model with an additional super massive field, they can become consistent with observations. Our results follow if the inflaton is the phase of a complex field (or an angular variable) protected by a mildly broken U(1) symmetry, and the radial component, whose mass is much greater than the Hubble scale, is stabilized at subplanckian values. The presence of the super massive field, besides modifying the effective single field potential, causes a reduction in the speed of sound of the inflaton fluctuations, which drives the prediction for the primordial spectrum towards the allowed experimental values. We discuss these effects also for the linear potential, and show that this model increases its agreement with data as well
We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semi-analytic treatment of the impact of perturbative reheating on cosmological perturbati ons using the sudden decay approximation. Focusing on $mathcal{N}$-quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.
The simplest two-field completion of natural inflation has a regime in which both fields are active and in which its predictions are within the Planck 1-$sigma$ confidence contour. We show this for the original model of natural inflation, in which in flation is achieved through the explicit breaking of a U(1) symmetry. We consider the case in which the mass coming from explicit breaking of this symmetry is comparable to that from spontaneous breaking, which we show is consistent with a hierarchy between the corresponding energy scales. While both masses are comparable when the observable modes left the horizon, the mass hierarchy is restored in the last e-foldings of inflation, rendering the predictions consistent with the isocurvature bounds. For completeness, we also study the predictions for the case in which there is a large hierarchy of masses and an initial period of inflation driven by the (heavy) radial field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا