ﻻ يوجد ملخص باللغة العربية
Using three newly identified galaxy clusters at z~1 (photometric redshift) we measure the evolution of the galaxies within clusters from high redshift to the present day by studying the growth of the red cluster sequence. The clusters are located in the Spitzer Infrared Array Camera (IRAC) Dark Field, an extremely deep mid-infrared survey near the north ecliptic pole with photometry in 18 total bands from X-ray through far-IR. Two of the candidate clusters are additionally detected as extended emission in matching Chandra data in the survey area allowing us to measure their masses to be M_{500}= 6.2 pm 1.0 times 10^{13} and 3.6 pm 1.1 times 10^{13} solar masses. For all three clusters we create a composite color magnitude diagram in rest-frame B-K using our deep HST and Spitzer imaging. By comparing the fraction of low luminosity member galaxies on the composite red sequence with the corresponding population in local clusters at z=0.1 taken from the COSMOS survey, we examine the effect of a galaxys mass on its evolution. We find a deficit of faint galaxies on the red sequence in our z~1 clusters which implies that more massive galaxies have evolved in clusters faster than less massive galaxies, and that the less massive galaxies are still forming stars in clusters such that they have not yet settled onto the red sequence.
We investigate the origin of the color-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey c
We study the color-magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z=0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence and the environment. We consider the slo
N-body + hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a LambdaCDM cosmology are used in order to follow the building-up of the colour-magnitude relation in two clusters and in 12 groups. We have found tha
We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequen