ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of the Red Sequence in Galaxy Clusters

176   0   0.0 ( 0 )
 نشر من قبل Noelia Jimenez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the origin of the color-magnitude relation (CMR) observed in cluster galaxies by using a combination of a cosmological N-body simulation of a cluster of galaxies and a semi-analytic model of galaxy formation. The departure of galaxies in the bright end of the CMR with respect to the trend defined by less luminous galaxies could be explained by the influence of minor mergers.



قيم البحث

اقرأ أيضاً

We study the color-magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z=0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence and the environment. We consider the slo pe and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction and the fractions of ellipticals, S0s and spirals that compose the red sequence. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies and spatial concentration of ellipticals. Instead, the properties of the red sequence depend strongly on local galaxy density. Higher density regions have a lower RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results highlight the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey c lusters at z = 0.5 to the similarly selected LARCS sample at z = 0.1 we find that the rest-frame d(U -V)/dV slope of the colour-magnitude relation evolves with redshift which we attribute to the build up of the red sequence over time. This rest frame slope evolution is not adequately reproduced by that predicted from semi-analytic models based on the Millennium Simulation despite a prescription for the build up of the red sequence by in-falling galaxies, strangulation. We observe no strong correlation between this slope and the cluster environment at a given redshift demonstrating that the observed evolution is not due to a secondary correlation. Also presented are near-infrared UKIRT WFCAM observations of the LARCS clusters which confirm and improve on the the result from Stott et al. (2007) finding that there has been a two-fold increase in faint MV > -20 galaxies on the red sequence since z = 0.5 to a significance of 5sigma.
145 - Michael C. Cooper 2009
Using samples drawn from the Sloan Digital Sky Survey, we study the relationship between local galaxy density and the properties of galaxies on the red sequence. After removing the mean dependence of average overdensity (or environment) on color and luminosity, we find that there remains a strong residual trend between luminosity-weighted mean stellar age and environment, such that galaxies with older stellar populations favor regions of higher overdensity relative to galaxies of like color and luminosity (and hence of like stellar mass). Even when excluding galaxies with recent star-formation activity (i.e., younger mean stellar ages) from the sample, we still find a highly significant correlation between stellar age and environment at fixed stellar mass. This residual age-density relation provides direct evidence for an assembly bias on the red sequence such that galaxies in higher-density regions formed earlier than galaxies of similar mass in lower-density environments. We discuss these results in the context of the age-metallicity degeneracy and in comparison to previous studies at low and intermediate redshift. Finally, we consider the potential role of assembly bias in explaining recent results regarding the evolution of post-starburst (or post-quenching) galaxies and the environmental dependence of the type Ia supernova rate.
This study explored the GALEX ultraviolet (UV) properties of optical red sequence galaxies in 4 rich Abell clusters at z leq 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r leq 5), and that number was doubled (~ 72%) when using a generous criterion (NUV - r leq 5.4). The trend was the same when we restricted the sample to galaxies within 0.5xR_{200}. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R_{200}. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the sub-structures in the galaxy clusters. Within R_{200} of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters sub-structures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass-loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.
210 - Alessio D. Romeo 2008
N-body + hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a LambdaCDM cosmology are used in order to follow the building-up of the colour-magnitude relation in two clusters and in 12 groups. We have found tha t galaxies, starting from the more massive, move to the Red Sequence (RS) as they get aged over times and eventually set upon a ``dead sequence (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z~1, after which major events only involve the brightest cluster galaxies. The emerging scenario is that the evolution of the colour-magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter halos assembly. Galaxies progressively quenching their star formation settle to a very sharp ``red and dead sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z~1.5) and environment. Differently from the DS, the operatively defined RS evolves more evidently with z, the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star forming one: this goes from z~1 in clusters down to 0.4 in normal groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا