ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background

272   0   0.0 ( 0 )
 نشر من قبل Shinya Tomizawa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new class of stationary charged black hole solutions to five-dimensional Einstein-Maxwell-Chern-Simons theories. We construct the solutions by utilizing so called the squashing transformation. At infinity, our solutions behave as a four-dimensional flat spacetime plus a `circle and hence describe a Kaluza-Klein black hole. More precisely, our solutions can be viewed as a charged rotating black hole in a rotating Gross-Perry-Sorkin monopole background with the black hole rotation induced from the background rotation.

قيم البحث

اقرأ أيضاً

We find a class of asymptotically flat slowly rotating charged black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling constant in higher dimensions. Our solution is the correct one generalizing the four-dimensional ca se of Horne and Horowitz cite{Hor1}. In the absence of a dilaton field, our solution reduces to the higher dimensional slowly rotating Kerr-Newman black hole solution. The angular momentum and the gyromagnetic ratio of these rotating dilaton black holes are computed. It is shown that the dilaton field modifies the gyromagnetic ratio of the black holes.
In this paper we explore the effect of the generalized uncertainty principle and modified dispersion relation to compute Hawking radiation from a rotating acoustic black hole in the tunneling formalism by using the Wentzel-Kramers-Brillouin (WKB) app roximation applied to the Hamilton-Jacobi method. The starting point is to consider the planar acoustic black hole metric found in a Lorentz-violating Abelian Higgs model. In our analyzes we investigate quantum corrections for the Hawking temperature and entropy. A logarithmic correction and an extra term that depends on a conserved charge were obtained. We also have found that the changing in the Hawking temperature ${cal T}_H$ for a dispersive medium due to a Lorentz-violating background accounts for supersonic velocities in the general form $(v_g-v_p)/v_p = Delta {cal T}_H/{cal T}_Hsim10^{-5}$ in Bose-Einstein-Condensate (BEC) systems.
117 - M. Cvetic , C.N. Pope , A. Saha 2020
Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal rotating black holes in Gaussian null coo rdinates. We obtain these as expansions in powers of the radial coordinate, up to sufficient order to be able to compute the Aretakis charges. The metrics we consider are for 4-charge black holes in four-dimensional STU supergravity (including the Kerr-Newman black hole in the equal-charge case) and the general 3-charge black holes in five-dimensional STU supergravity. We also investigate the circumstances under which the Aretakis charges of an extremal black hole can be mapped by conformal inversion of the metric into Newman-Penrose charges at null infinity. We show that while this works for four-dimensional static black holes, a simple radial inversion fails in rotating cases because a necessary conformal symmetry of the massless scalar equation breaks down. We also discuss that a massless scalar field in dimensions higher than four does not have any conserved Newman-Penrose charge, even in a static asymptotically flat spacetime.
We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tens ion, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at $t=0$. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.
It is shown that an arbitrarily small amount of angular momentum can qualitatively change the properties of extremal charged black holes coupled to a dilaton. In addition, the gyromagnetic ratio of these black holes is computed and an exact rotating black string solution is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا