ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the Gini coefficient a stable measure of galaxy structure?

324   0   0.0 ( 0 )
 نشر من قبل Thorsten Lisker
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thorsten Lisker




اسأل ChatGPT حول البحث

The Gini coefficient, a non-parametric measure of galaxy morphology, has recently taken up an important role in the automated identification of galaxy mergers. I present a critical assessment of its stability, based on a comparison of HST/ACS imaging data from the GOODS and UDF surveys. Below a certain signal-to-noise level, the Gini coefficient depends strongly on the signal-to-noise ratio, and thus becomes useless for distinguishing different galaxy morphologies. Moreover, at all signal-to-noise levels the Gini coefficient shows a strong dependence on the choice of aperture within which it is measured. Consequently, quantitative selection criteria involving the Gini coefficient, such as a selection of merger candidates, cannot always be straightforwardly applied to different datasets. I discuss whether these effects could have affected previous studies that were based on the Gini coefficient, and establish signal-to-noise limits above which measured Gini values can be considered reliable.


قيم البحث

اقرأ أيضاً

We systematically analyze the flavor color spin structure of the pentaquark $q^4bar{Q}$ system in a constituent quark model based on the chromomagnetic interaction in both the SU(3) flavor symmetric and SU(3) flavor broken case with and without charm quarks. We show that the originally proposed pentaquark state $bar{Q}s qqq$ by Gignoux et al and by Lipkin indeed belongs to the most stable pentaquark configuration, but that when charm quark mass correction based on recent experiments are taken into account, a doubly charmed antistrange pentaquark configuration ($udc c bar{s}$) is perhaps the only flavor exotic configuration that could be stable and realistically searched for at present through the $Lambda_c K^+ K^- pi^+$ final states. The proposed final state is just reconstructing $K^+$ instead of $pi^+$ in the measurement of $Xi^{++}_{cc} rightarrow Lambda_c K^- pi^+ pi^+$ reported by LHCb collaboration and hence measurable immediately.
We propose an extended version of Gini index defined on the set of infinite utility streams, $X=Y^mathbb{N}$ where $Ysubset mathbb{R}$. For $Y$ containing at most finitely many elements, the index satisfies the generalized Pigou-Dalton transfer principles in addition to the anonymity axiom.
We solve the oscillation stability problem for the Urysohn sphere, an analog of the distortion problem for the Hilbert space in the context of the Urysohn universal metric space. This is achieved by solving a purely combinatorial problem involving a family of countable homogeneous metric spaces with finitely many distances.
90 - Dirk Helbing 2013
Peaceful citizens and hard-working taxpayers are under government surveillance. Confidential communication of journalists is intercepted. Civilians are killed by drones, without a chance to prove their innocence. How could it come that far? And what are the alternatives?
Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modelling with heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well-defined and finite, then these coefficients are related and sometimes even coincide. In general, understanding how the correlation coefficients above are related has been an illusive task. In this paper we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type Weighted Insurance Pricing Model that works in heavy-tailed situation and thus provides a natural alternative to the classical Capital Asset Pricing Model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا