ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical Hamiltonians for waves in inhomogeneous media

374   0   0.0 ( 0 )
 نشر من قبل Yuri Lvov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a canonical form of a quadratic Hamiltonian for linear waves in a weakly inhomogeneous medium. This is achieved by using the WKB representation of wave packets. The canonical form of the Hamiltonian is obtained via the series of canonical Bogolyubov-type and near-identical transformations. Various examples of the application illustrating the main features of our approach are presented. The knowledge of the Hamiltonian structure for linear wave systems provides a basis for developing a theory of weakly nonlinear random waves in inhomogeneous media generalizing the theory of homogeneous wave turbulence.



قيم البحث

اقرأ أيضاً

Electromagnetic Casimir stresses are of relevance to many technologies based on mesoscopic devices such as MEMS embedded in dielectric media, Casimir induced friction in nano-machinery, micro-fluidics and molecular electronics. Computation of such st resses based on cavity QED generally require numerical analysis based on a regularization process. A new scheme is described that has the potential for wide applicability to systems involving realistic inhomogeneous media. From a knowledge of the spectrum of the stationary modes of the electromagnetic field the scheme is illustrated by estimating numerically the Casimir stress on opposite faces of a pair of perfectly conducting planes separated by a vacuum and the change in this result when the region between the plates is filled with an incompressible inhomogeneous non-dispersive dielectric.
We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann kinetic equation. In cite{pomeau1987shock}, a self-similarity approach was proposed for infinite total cross section resulting from a power law in teraction, but this self-similar form does not have finite energy. Motivated by the work of Pomeau, Bobylev and Cercignani started the rigorous study of the solutions of the spatial homogeneous Boltzmann equation, focusing on those which do not have finite energy cite{bobylev2002self,bobylev2003eternal}. In the present work, we provide a correction to the self-similar form, so that the solutions are more physically sound in the sense that the energy is no longer infinite and that the perturbation brought by the shock does not grow at large distances of it on the cold side in the soft potential case.
We consider the static Maxwell system with an axially symmetric dielectric permittivity and construct complete systems of its solutions which can be used for analytic and numerical solution of corresponding boundary value problems.
155 - I.V. Tyutin , B.L. Voronov 2013
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized o scillator representations for all generalized Calogero Hamiltonians with potential $V(x)=g_{1}/x^2+g_{2}x^2$, $g_{1}geq-1/4$, $g_{2}>0$. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian, representation that explicitly determines the ground state and the ground-state energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist in agreement with the fact that the respective Hamiltonians are not bounded from below.
We construct explicit bound state wave functions and bound state energies for certain $N$--body Hamiltonians in one dimension that are analogous to $N$--electron Hamiltonians for (three-dimensional) atoms and monatomic ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا