ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on temperature without energy - a social example

40   0   0.0 ( 0 )
 نشر من قبل Krzysztof Kulakowski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of magnetic susceptibility in the Ising model is used to identify the social temperature as the rate of random changes of strategy for a set of agents playing two different strategies.

قيم البحث

اقرأ أيضاً

Contagion models are a primary lens through which we understand the spread of information over social networks. However, simple contagion models cannot reproduce the complex features observed in real-world data, leading to research on more complicate d complex contagion models. A noted feature of complex contagion is social reinforcement that individuals require multiple exposures to information before they begin to spread it themselves. Here we show that the quoter model, a model of the social flow of written information over a network, displays features of complex contagion, including the weakness of long ties and that increased density inhibits rather than promotes information flow. Interestingly, the quoter model exhibits these features despite having no explicit social reinforcement mechanism, unlike complex contagion models. Our results highlight the need to complement contagion models with an information-theoretic view of information spreading to better understand how network properties affect information flow and what are the most necessary ingredients when modeling social behavior.
Social network based information campaigns can be used for promoting beneficial health behaviours and mitigating polarisation (e.g. regarding climate change or vaccines). Network-based intervention strategies typically rely on full knowledge of netwo rk structure. It is largely not possible or desirable to obtain population-level social network data due to availability and privacy issues. It is easier to obtain information about individuals attributes (e.g. age, income), which are jointly informative of an individuals opinions and their social network position. We investigate strategies for influencing the system state in a statistical mechanics based model of opinion formation. Using synthetic and data based examples we illustrate the advantages of implementing coarse-grained influence strategies on Ising models with modular structure in the presence of external fields. Our work provides a scalable methodology for influencing Ising systems on large graphs and the first exploration of the Ising influence problem in the presence of ambient (social) fields. By exploiting the observation that strong ambient fields can simplify control of networked dynamics, our findings open the possibility of efficiently computing and implementing public information campaigns using insights from social network theory without costly or invasive levels of data collection.
In this paper we show that the small world and weak ties phenomena can spontaneously emerge in a social network of interacting agents. This dynamics is simulated in the framework of a simplified model of opinion diffusion in an evolving social networ k where agents are made to interact, possibly update their beliefs and modify the social relationships according to the opinion exchange.
Recent studies have shown that online users tend to select information adhering to their system of beliefs, ignore information that does not, and join groups - i.e., echo chambers - around a shared narrative. Although a quantitative methodology for t heir identification is still missing, the phenomenon of echo chambers is widely debated both at scientific and political level. To shed light on this issue, we introduce an operational definition of echo chambers and perform a massive comparative analysis on more than 1B pieces of contents produced by 1M users on four social media platforms: Facebook, Twitter, Reddit, and Gab. We infer the leaning of users about controversial topics - ranging from vaccines to abortion - and reconstruct their interaction networks by analyzing different features, such as shared links domain, followed pages, follower relationship and commented posts. Our method quantifies the existence of echo-chambers along two main dimensions: homophily in the interaction networks and bias in the information diffusion toward likely-minded peers. We find peculiar differences across social media. Indeed, while Facebook and Twitter present clear-cut echo chambers in all the observed dataset, Reddit and Gab do not. Finally, we test the role of the social media platform on news consumption by comparing Reddit and Facebook. Again, we find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
A definition of quasi-local energy in a gravitational field based upon its embedding into flat space is discussed. The outcome is not satisfactory from many points of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا