ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic motion of Charged Particles in an Electromagnetic Field Surrounding a Rotating Black Hole

63   0   0.0 ( 0 )
 نشر من قبل Masaaki Takahashi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be reveiled by magnetic phenomena near the black hole. We will start to investigate the motion of a charged particle which depends on the initial parameter setting in the black hole dipole magnetic field. Specially, we study the spin effects of a rotating black hole on the motion of the charged particle trapped in magnetic field lines. We make detailed analysis for the particles trajectories by using the Poincar{e} map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.

قيم البحث

اقرأ أيضاً

We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends most ly on the energy of the particle and the radius of the orbit. The energy and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial plane.
In the tunneling framework of Hawking radiation, charged massive particles tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentu m through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged non-rotating micro black hole by taking into account the full implications of energy and charge conservation as well as the back- scattered radiation.
We study the motion of a string in the background of Reissner-Nordstrom black hole, in both AdS as well as asymptotically flat spacetimes. We describe the phase space of this dynamical system through largest Lyapunov exponent, Poincare sections and b asins of attractions. We observe that string motion in these settings is particularly chaotic and comment on its characteristics.
We construct analytical and regular solutions in four-dimensional General Relativity which represent multi-black hole systems immersed in external gravitational field configurations. The external field background is composed by an infinite multipolar expansion, which allows to regularise the conical singularities of an array of collinear static black holes. A stationary rotating generalisation is achieved by adding independent angular momenta and NUT parameters to each source of the binary configuration. Moreover, a charged extension of the binary black hole system at equilibrium is generated. Finally, we show that the binary Majumdar-Papapetrou solution is consistently recovered in the vanishing external field limit. All of these solutions reach an equilibrium state due to the external gravitational field only, avoiding in this way the presence of any string or strut defect.
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon and static limit of the said black hole. By making use of geodesic equations on the equatorial plane, we determine the innermost stable circular and photon orbits. Moreover, we investigate the effective potentials and effective force to have information on motion and the stability of circular orbits. On studying the negative energy states, we figure out the energy limits of Penrose mechanism. Using Penrose mechanism, we found expression for the efficiency of energy extraction and observed that both spin and deviation parameters, contribute to the efficiency of energy extraction. Finally, the obtained results are compared with that acquired from Kerr and braneworld Kerr black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا