ﻻ يوجد ملخص باللغة العربية
We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends mostly on the energy of the particle and the radius of the orbit. The energy and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial plane.
In a recent work of Wu, Wang, Sun and Liu, a second-order explicit symplectic integrator was proposed for the integrable Kerr spacetime geometry. It is still suited for simulating the nonintegrable dynamics of charged particles moving around the Kerr
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon
We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergospher
Motivated by possible existence of stringy axions with ultralight mass, we study the behavior of an axion field around a rapidly rotating black hole (BH) obeying the sine-Gordon equation by numerical simulations. Due to superradiant instability, the
The recent opening of gravitational wave astronomy has shifted the debate about black hole mimickers from a purely theoretical arena to a phenomenological one. In this respect, missing a definitive quantum gravity theory, the possibility to have simp