ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulge n and B/T in High Mass Galaxies: Constraints on the Origin of Bulges in Hierarchical Models

43   0   0.0 ( 0 )
 نشر من قبل Tim Weinzirl
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tim Weinzirl




اسأل ChatGPT حول البحث

We use the bulge Sersic index n and bulge-to-total ratio (B/T) to explore the fundamental question of how bulges form. We perform 2D bulge-disk-bar decomposition on H-band images of 143 bright, high stellar mass (>1.0e10 solar masses) low-to-moderately inclined (i<70 degrees) spirals. Our results are: (1) Our H-band bar fraction (~58%) is consistent with that from ellipse fits. (2) 70% of the stellar mass is in disks, 10% in bars, and 20% in bulges. (3) A large fraction (~69%) of bright spirals have B/T<0.2, and ~76% have low n<2 bulges. These bulges exist in barred and unbarred galaxies across a wide range of Hubble types. (4) About 65% (68%) of bright spirals with n<2 (B/T<0.2) bulges host bars, suggesting a possible link between bars and bulges. (5) We compare the results with predictions from a set of LCDM models. In the models, a high mass spiral can have a bulge with a present-day low B/T<0.2 only if it did not undergo a major merger since z<2. The predicted fraction (~1.6%) of high mass spirals, which have undergone a major merger since z<4 and host a bulge with a present-day low B/T<0.2, is a factor of over thirty smaller than the observed fraction (~66%) of high mass spirals with B/T<0.2. Thus, contrary to common perception, bulges built via major mergers since z<4 seriously fail to account for the bulges present in ~66% of high mass spirals. Most of these present-day low B/T<0.2 bulges are likely to have been built by a combination of minor mergers and/or secular processes since z<4.

قيم البحث

اقرأ أيضاً

Studying the resolved stellar populations of the different structural components which build massive galaxies directly unveils their assembly history. We aim at characterizing the stellar population properties of a representative sample of bulges and pure spheroids in massive galaxies ($M_{star}>10^{10}$ M$_{odot}$) in the GOODS-N field. We take advantage of the spectral and spatial information provided by SHARDS and HST data to perform the multi-image spectro-photometrical decoupling of the galaxy light. We derive the spectral energy distribution separately for bulges and disks in the redshift range $0.14<zleq1$ with spectral resolution $Rsim50$. Analyzing these SEDs, we find evidences of a bimodal distribution of bulge formation redshifts. We find that 33% of them present old mass-weighted ages, implying a median formation redshift $z_{rm{form}}={6.2}_{-1.7}^{+1.5}$. They are relics of the early Universe embedded in disk galaxies. A second wave, dominant in number, accounts for bulges formed at median redshift $z_{rm{form}}={1.3}_{-0.6}^{+0.6}$. The oldest (1$^{rm{st}}$-wave) bulges are more compact than the youngest. Virtually all pure spheroids (i.e., those without any disk) are coetaneous with the 2$^{rm{nd}}$-wave bulges, presenting a median redshift of formation $z_{rm{form}}={1.1}_{-0.3}^{+0.3}$. The two waves of bulge formation are not only distinguishable in terms of stellar ages, but also in star formation mode. All 1$^{rm st}$-wave bulges formed fast at $zsim6$, with typical timescales around 200 Myr. A significant fraction of the 2$^{rm{nd}}$-wave bulges assembled more slowly, with star formation timescales as long as 1 Gyr. The results of this work suggest that the centers of massive disk-like galaxies actually harbor the oldest spheroids formed in the Universe.
We report about the fact that the stellar population that is born in the gas inflowing towards the central regions can be vertically unstable leading to a B/PS feature remarkably bluer that the surrounding bulge. Using new chemodynamical simulations we show that this young population does not remain as flat as the gaseous nuclear disc and buckles out of the plane to form a new boxy bulge. We show that such a young B/PS bulge can be detected in colour maps.
54 - Jason Tumlinson 2005
I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the metallicity distribution function (M DF) for Population II stars residing today in the Galactic halo. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Z_crit <~ 10^-4 Z_sun, below which low-mass star formation is inhibited, and perhaps impossible. The observed constraints from the halo MDF, relative metal abundances from Galactic halo stars, and the ionizing photon budget needed to reionize the IGM together imply a stellar IMF that is peaked in the range of massive stars that experience core-collapse supernovae, with mean mass <M> = 8 - 42 Msun. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. The model also implies that metal-poor halo stars below [Fe/H] <~ -3 had only 1 - 10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long term project to connect the high-redshift in situ indicators of early star formation with the low-z, old remnants of the first stars.
We provide new insight on the origin of the cold high-V$_{rm los}$ peaks ($sim$200 kms$^{-1}$) in the Milky Way bulge discovered in the APOGEE commissioning data citep{Nidever2012}. Here we show that such kinematic behaviour present in the field regi ons towards the Galactic bulge is not likely associated with orbits that build the boxy/peanut (B/P) bulge. To this purpose, a new set of test particle simulations of a kinematically cold stellar disk evolved in a 3D steady-state barred Milky Way galactic potential, has been analysed in detail. Especially bar particles trapped into the bar are identified through the orbital Jacobi energy $E_{J}$, which allows us to identify the building blocks of the B/P feature and investigate their kinematic properties. Finally, we present preliminary results showing that the high-V$_{rm los}$ features observed towards the Milky Way bulge are a natural consequence of a large-scale textit{midplane} particle structure, which is unlikely associated with the Galactic bar.
88 - Akos Bogdan 2012
We study two nearby, early-type galaxies, NGC4342 and NGC4291, that host unusually massive black holes relative to their low stellar mass. The observed black hole-to-bulge mass ratios of NGC4342 and NGC4291 are ~6.9% and ~1.9%, respectively, which si gnificantly exceed the typical observed ratio of ~0.2%. As a consequence of the exceedingly large black hole-to-bulge mass ratios, NGC4342 and NGC4291 are ~5.1 sigma and ~3.4 sigma outliers from the M_BH - M_bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC4342 and NGC4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC4342 and NGC4291 and a deep optical image of the environment of NGC4342 indicate that tidal stripping, in which >90% of the stellar mass was lost, cannot explain the observed high black hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا