ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical Evolution in Hierarchical Models Of Cosmic Structure I: Constraints on the Early Stellar Initial Mass Function

55   0   0.0 ( 0 )
 نشر من قبل Jason Tumlinson
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jason Tumlinson




اسأل ChatGPT حول البحث

I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the metallicity distribution function (MDF) for Population II stars residing today in the Galactic halo. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Z_crit <~ 10^-4 Z_sun, below which low-mass star formation is inhibited, and perhaps impossible. The observed constraints from the halo MDF, relative metal abundances from Galactic halo stars, and the ionizing photon budget needed to reionize the IGM together imply a stellar IMF that is peaked in the range of massive stars that experience core-collapse supernovae, with mean mass <M> = 8 - 42 Msun. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. The model also implies that metal-poor halo stars below [Fe/H] <~ -3 had only 1 - 10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long term project to connect the high-redshift in situ indicators of early star formation with the low-z, old remnants of the first stars.



قيم البحث

اقرأ أيضاً

In this contribution we focus on results from chemical evolution models for the solar neighbourhood obtained by varying the IMF. Results for galaxies of different morphological type are discussed as well. They argue against a universal IMF independent of star forming conditions.
The stellar initial mass function and the stellar lifetimes are basic ingredients of chemical evolution models, for which different recipes can be found in the literature. In this paper, we quantify the effects on chemical evolution studies of the un certainties in these two parameters. We concentrate on chemical evolution models for the Milky Way, because of the large number of good observational constraints. Such chemical evolution models have already ruled out significant temporal variations for the stellar initial mass function in our own Galaxy, with the exception perhaps of the very early phases of its evolution. Therefore, here we assume a Galactic initial mass function constant in time. Through an accurate comparison of model predictions for the Milky Way with carefully selected data sets, it is shown that specific prescriptions for the initial mass function in particular mass ranges should be rejected. As far as the stellar lifetimes are concerned, the major differences among existing prescriptions are found in the range of very low-mass stars. Because of this, the model predictions widely differ for those elements which are produced mostly by very long-lived objects, as for instance 3He and 7Li. However, it is concluded that model predictions of several important observed quantities, constraining the plausible Galactic formation scenarios, are fairly robust with respect to changes in both the stellar mass spectrum and the stellar lifetimes. For instance, the metallicity distribution of low-mass stars is nearly unaffected by these changes, since its shape is dictated mostly by the time scale for thin-disk formation.
We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution (GCE) model an d can now predict abundances of individual elements for the galaxies in the semi-analytic simulations. This is the first time a SAM with feedback from Active Galactic Nuclei (AGN) has included a chemical evolution prescription that relaxes the instantaneous recycling approximation. We find that the new models are able to reproduce the observed mass-metallicity (M*-[Z/H]) relation and, for the first time in a SAM, we reproduce the observed positive slope of the mass-abundance ratio (M*-[$alpha$/Fe]) relation. Our results indicate that in order to simultaneously match these observations of early-type galaxies, the use of both a very mildly top-heavy IMF (i.e., with a slope of x=1.15 as opposed to a standard x=1.3), and a lower fraction of binaries that explode as Type Ia supernovae appears to be required. We also examine the rate of supernova explosions in the simulated galaxies. In early-type (non-star forming) galaxies, our predictions are also consistent with the observed SNe rates. However, in star-forming galaxies, a higher fraction of SN Ia binaries than in our preferred model is required to match the data. If, however, we deviate from the classical model and introduce a population of SNe Ia with very short delay times, our models simultaneously produce a good match to the observed metallicities, abundance ratios and SN rates.
355 - Fabio Fontanot 2018
In this paper, we present a new derivation of the shape and evolution of the integrated galaxy-wide initial mass function (IGIMF), incorporating explicitly the effects of cosmic rays (CRs) as regulators of the chemical and thermal state of the gas in the dense cores of molecular clouds. We predict the shape of the IGIMF as a function of star formation rate (SFR) and CR density, and show that it can be significantly different with respect to local estimates. In particular, we focus on the physical conditions corresponding to IGIMF shapes that are simultaneously shallower at high-mass end and steeper at the low-mass end than a Kroupa IMF. These solutions can explain both the levels of $alpha$-enrichment and the excess of low-mass stars as a function of stellar mass, observed for local spheroidal galaxies. As a preliminary test of our scenario, we use idealized star formation histories to estimate the mean IMF shape for galaxies of different $z=0$ stellar mass. We show that the fraction of low-mass stars as a function of galaxy stellar mass predicted by these mean IMFs agrees with the values derived from high-resolution spectroscopic surveys.
The local stellar mass density is observed to be significantly lower than the value obtained from integrating the cosmic star formation history (SFH), assuming that all the stars formed with a Salpeter initial mass function (IMF). Even other favoured IMFs, more successful in reconciling the observed $z=0$ stellar mass density with that inferred from the SFH, have difficulties in reproducing the stellar mass density observed at higher redshift. In this study we investigate to what extent this discrepancy can be alleviated for any universal power-law IMF. We find that an IMF with a high-mass slope shallower (2.15) than the Salpeter slope (2.35) reconciles the observed stellar mass density with the cosmic star formation history, but only at low redshifts. At higher redshifts $z>0.5$ we find that observed stellar mass densities are systematically lower than predicted from the cosmic star formation history, for any universal power-law IMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا