ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the order-to-chaos region in superdeformed 151Tb and 196Pb nuclei with continuum gamma-transitions

56   0   0.0 ( 0 )
 نشر من قبل Silvia Leoni
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The gamma-decay associated with the warm rotation of the superdeformed (SD) nuclei 151Tb and 196Pb has been measured with the EUROBALL IV array. Several independent quantities provide a stringent test of the population and decay dynamics in the SD well. A Monte Carlo simulation of the gamma-decay based on microscopic calculations gives remarkable agreement with the data only assuming a large enhancement of the B(E1) strength at low excitation energy, which may be related to the evidence for octupole vibrations in both mass regions.

قيم البحث

اقرأ أيضاً

Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exist and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J(2), are shown to exist. The pairing correlations taken into account by using the particle-number-projection technique are shown to increase the disagreement. Sources of these systematic discrepancies are discussed -- they are most likely related to the yet not optimal parametrization of the nuclear interactions used.
First order quantum phase transition (QPT) between spherical and axially deformed nuclei shows coexisting, but well-separated regions of regular and chaotic dynamics. We employ a Hamiltonian of the Arima-Iachello Interacting Boson Model (IBM) with an arbitrarily high potential barrier separating the phases. Classical and quantum analyses reveal markedly distinct behavior of the two phases: Deformed phase is completely regular, while the spherical phase shows highly chaotic dynamics, similar to the Henon-Heiles system. Rotational bands with quasi-SU(3) characteristics built upon the regular vibrational spectrum of beta- and gamma-vibrations are observed in the deformed phase up to very high excitation energies.
181 - A. Prevost 2004
New results on the superdeformed $^{196}$Bi nucleus a re reported. We have observed with the EUROBALL IV $gamma$-ray spectrometer array a superdeformed trans ition of 124 keV which is the lowest observed energy $gamma$-ray in any superdeformed nucleu s. We have de velopped microscopic cranked Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a realistic surface p airing which strongly support the $K^pi=2^-$($pi$[651]1/2$otimes u$[752]5/2) assignment of this su perdeformed band.
MURMUR is a new passing-through-walls neutron experiment designed to constrain neutron/hidden neutron transitions allowed in the context of braneworld scenarios or mirror matter models. A nuclear reactor can act as a hidden neutron source, such that neutrons travel through a hidden world or sector. Hidden neutrons can propagate out of the nuclear core and far beyond the biological shielding. However, hidden neutrons can weakly interact with usual matter, making possible for their detection in the context of low-noise measurements. In the present work, the novelty rests on a better background discrimination and the use of a mass of a material - here lead - able to enhance regeneration of hidden neutrons into visible ones to improve detection. The input of this new setup is studied using both modelizations and experiments, thanks to tests currently performed with the experiment at the BR2 research nuclear reactor (SCK$cdot$CEN, Mol, Belgium). A new limit on the neutron swapping probability p has been derived thanks to the measurements taken during the BR2 Cycle 02/2019A: $p < 4.0 times 10^{-10}$ at 95% CL. This constraint is better than the bound from the previous passing-through-wall neutron experiment made at ILL in 2015, despite BR2 is less efficient to generate hidden neutrons by a factor 7.4, thus raising the interest of such experiment using regenerating materials.
182 - K.Yoshida , M.Matsuo 1998
Damping of rotational motion in superdeformed Hg and Dy-region nuclei is studied by means of cranked shell model diagonalization. It is shown that a shell oscillation in single-particle alignments affects significantly properties of rotational dampin g. Onset properties of damping and damping width for Hg are quite different from those for Dy-region superdeformed nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا