ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas flow models in the Milky Way embedded bars

53   0   0.0 ( 0 )
 نشر من قبل Nemesio Rodriguez-Fernandez
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gas distribution and dynamics in the inner Galaxy present many unknowns as the origin of the asymmetry of the longitude-velocity (lv) diagram of the Central Molecular Zone (CMZ). On the other hand, there are recent evidences in the stellar component of the presence of a nuclear bar that could be slightly lopsided. Our goal is to characterize the nuclear bar observed in 2MASS maps and to study the gas dynamics in the inner Milky Way taking into account this secondary bar. We have derived a realistic mass distribution by fitting 2MASS star counts maps with three components (disk, bulge and nuclear bar) and we have simulated the gas dynamics, in the deduced gravitational potential, using a sticky-particles code. Our simulations of the gas dynamics reproduce successfully the main characteristics of the Milky Way for a bulge orientation of 20-35 deg with respect to the Sun-Galactic Center (GC) line and a pattern speed of 30-40 km/s/kpc. In our models the Galactic Molecular Ring (GMR) is not an actual ring but the inner parts of the spiral arms, while the 3-kpc arm and its far side counterpart are lateral arms that contour the bar. Our simulations reproduce, for the first time, the parallelogram shape of the lv-diagram of the CMZ as the gas response to the nuclear bar. This bar should be oriented by an angle of ~60-75 deg with respect to the Sun-GC line and its mass amounts to (2-5.5)10e9 Msun. We show that the observed asymmetry of the CMZ cannot be due to lopsidedness of the nuclear bar as suggested by the 2MASS maps. We do not find clear evidences of lopsidedness in the stellar potential. We propose that the observed asymmetry of the central gas layer can be due to the infalling of gas into the CMZ in the l=1.3-complex

قيم البحث

اقرأ أيضاً

We use a model of the Galactic fountain to simulate the neutral-hydrogen emission of the Milky Way Galaxy. The model was developed to account for data on external galaxies with sensitive HI data. For appropriate parameter values, the model reproduces well the HI emission observed at Intermediate Velocities. The optimal parameters imply that cool gas is ionised as it is blasted out of the disc, but becomes neutral when its vertical velocity has been reduced by ~30 per cent. The parameters also imply that cooling of coronal gas in the wakes of fountain clouds transfers gas from the virial-temperature corona to the disc at ~2 Mo/yr. This rate agrees, to within the uncertainties with the accretion rate required to sustain the Galaxys star formation without depleting the supply of interstellar gas. We predict the radial profile of accretion, which is an important input for models of Galactic chemical evolution. The parameter values required for the model to fit the Galaxys HI data are in excellent agreement with values estimated from external galaxies and hydrodynamical studies of cloud-corona interaction. Our model does not reproduce the observed HI emission at High Velocities, consistent with High Velocity Clouds being extragalactic in origin. If our model is correct, the structure of the Galaxys outer HI disc differs materially from that used previously to infer the distribution of dark matter on the Galaxys outskirts.
We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas wit h $|v_{rm LSR}| < 25 $ kms$^{-1}$ on angular scales of 11 to 16. Unsharp masking (USM) is applied to extract small scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes $|b|>20^circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{rm HI} simeq 10^{19.1},{rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{rm HI} simeq 10^{20} {rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{rm tot} = (6.0 pm 1.8)mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is in the range $ 14 < n < 47 {rm cm^{-3}}$.
33 - Stacy McGaugh 2008
Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND. The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of t he Galaxys rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 to 2.5 kpc. The favored value of scale length depends somewhat on the choice of interpolation function. There is some preference for the `simple interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with `bumps and wiggles in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.
51 - B. M. Gaensler 2008
We present a new joint analysis of pulsar dispersion measures and diffuse H-alpha emission in the Milky Way, which we use to derive the density, pressure and filling factor of the thick disk component of the warm ionised medium (WIM) as a function of height above the Galactic disk. By excluding sightlines at low Galactic latitude that are contaminated by HII regions and spiral arms, we find that the exponential scale-height of free electrons in the diffuse WIM is 1830 (+120, -250) pc, a factor of two larger than has been derived in previous studies. The corresponding inconsistent scale heights for dispersion measure and emission measure imply that the vertical profiles of mass and pressure in the WIM are decoupled, and that the filling factor of WIM clouds is a geometric response to the competing environmental influences of thermal and non-thermal processes. Extrapolating the properties of the thick-disk WIM to mid-plane, we infer a volume-averaged electron density 0.014 +- 0.001 cm^-3, produced by clouds of typical electron density 0.34 +- 0.06 cm^-3 with a volume filling factor 0.04 +- 0.01. As one moves off the plane, the filling factor increases to a maximum of ~30% at a height of approximately 1-1.5 kpc, before then declining to accommodate the increasing presence of hot, coronal gas. Since models for the WIM with a ~1 kpc scale-height have been widely used to estimate distances to radio pulsars, our revised parameters suggest that the distances to many high-latitude pulsars have been substantially underestimated.
We address the spatial scale, ionization structure, mass and metal content of gas at the Milky Way disk-halo interface detected as absorption in the foreground of seven closely-spaced, high-latitude halo blue horizontal branch stars (BHBs) with heigh ts z = 3 - 14 kpc. We detect transitions that trace multiple ionization states (e.g. CaII, FeII, SiIV, CIV) with column densities that remain constant with height from the disk, indicating that the gas most likely lies within z < 3.4 kpc. The intermediate ionization state gas traced by CIV and SiIV is strongly correlated over the full range of transverse separations probed by our sightlines, indicating large, coherent structures greater than 1 kpc in size. The low ionization state material traced by CaII and FeII does not exhibit a correlation with either N$_{rm HI}$ or transverse separation, implying cloudlets or clumpiness on scales less than 10 pc. We find that the observed ratio log(N_SiIV/ N_CIV), with a median value of -0.69+/-0.04, is sensitive to the total carbon content of the ionized gas under the assumption of either photoionization or collisional ionization. The only self-consistent solution for photoionized gas requires that Si be depleted onto dust by 0.35 dex relative to the solar Si/C ratio, similar to the level of Si depletion in DLAs and in the Milky Way ISM. The allowed range of values for the areal mass infall rate of warm, ionized gas at the disk-halo interface is 0.0003 < dM_gas / dtdA [M_sun kpc^-2 yr^-] < 0.006. Our data support a physical scenario in which the Milky Way is fed by complex, multiphase processes at its disk-halo interface that involve kpc-scale ionized envelopes or streams containing pc-scale, cool clumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا