ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vertical Structure of Warm Ionised Gas in the Milky Way

93   0   0.0 ( 0 )
 نشر من قبل Bryan Gaensler
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. M. Gaensler




اسأل ChatGPT حول البحث

We present a new joint analysis of pulsar dispersion measures and diffuse H-alpha emission in the Milky Way, which we use to derive the density, pressure and filling factor of the thick disk component of the warm ionised medium (WIM) as a function of height above the Galactic disk. By excluding sightlines at low Galactic latitude that are contaminated by HII regions and spiral arms, we find that the exponential scale-height of free electrons in the diffuse WIM is 1830 (+120, -250) pc, a factor of two larger than has been derived in previous studies. The corresponding inconsistent scale heights for dispersion measure and emission measure imply that the vertical profiles of mass and pressure in the WIM are decoupled, and that the filling factor of WIM clouds is a geometric response to the competing environmental influences of thermal and non-thermal processes. Extrapolating the properties of the thick-disk WIM to mid-plane, we infer a volume-averaged electron density 0.014 +- 0.001 cm^-3, produced by clouds of typical electron density 0.34 +- 0.06 cm^-3 with a volume filling factor 0.04 +- 0.01. As one moves off the plane, the filling factor increases to a maximum of ~30% at a height of approximately 1-1.5 kpc, before then declining to accommodate the increasing presence of hot, coronal gas. Since models for the WIM with a ~1 kpc scale-height have been widely used to estimate distances to radio pulsars, our revised parameters suggest that the distances to many high-latitude pulsars have been substantially underestimated.



قيم البحث

اقرأ أيضاً

113 - Heidi Jo Newberg , Yan Xu 2017
An oscillating vertical displacement of the Milky Way, with a wavelength of about 8 kpc and and amplitude of about 100 pc (increasing with distance from the Galactic center) is observed towards the Galactic anticenter. These oscillations are thought to be the result of disk perturbations from dwarf satellites of the Milky Way. They explain the Monoceros Ring and could be related to Milky Way spiral structure.
We compare molecular gas properties in the starbursting center of NGC253 and the Milky Way Galactic Center (GC) on scales of ~1-100 pc using dendograms and resolution-, area- and noise-matched datasets in CO (1-0) and CO (3-2). We find that the size- line width relations in NGC253 and the GC have similar slope, but NGC253 has larger line widths by factors of ~2-3. The $sigma^2/R$ dependency on column density shows that, in the GC, on scales of 10-100 pc the kinematics of gas over $N>3times10^{21}$ cm$^{-2}$ are compatible with gravitationally bound structures. In NGC253 this is only the case for column densities $N>3times10^{22}$ cm$^{-2}$. The increased line widths in NGC253 originate in the lower column density gas. This high-velocity dispersion, not gravitationally self-bound gas is likely in transient structures created by the combination of high average densities and feedback in the starburst. The high densities turns the gas molecular throughout the volume of the starburst, and the injection of energy and momentum by feedback significantly increases the velocity dispersion at a given spatial scale over what is observed in the GC.
146 - Smita Mathur 2012
The circumgalactic region of the Milky Way contains a large amount of gaseous mass in the warm-hot phase. The presence of this warm-hot halo observed through $z=0$ X-ray absorption lines is generally agreed upon, but its density, path-length, and mas s is a matter of debate. Here I discuss in detail why different investigations led to different results. The presence of an extended (over 100 kpc) and massive (over ten billion solar masses) warm-hot gaseous halo is supported by observations of other galaxies as well. I briefly discuss the assumption of constant density and end with outlining future prospects.
132 - Zhao-Yu Li , Juntai Shen 2012
A vertical X-shaped structure was recently reported in the Galactic bulge. Here we present evidence of a similar X-shaped structure in the Shen et al. (2010) bar/boxy bulge model that simultaneously matches the stellar kinematics successfully. The X- shaped structure is found in the central region of our bar/boxy bulge model, and is qualitatively consistent with the observed one in many aspects. End-to-end separations of the X-shaped structure in the radial and vertical directions are roughly 3 kpc and 1.8 kpc, respectively. The X-shaped structure contains about 7% of light in the boxy bulge region, but it is significant enough to be identified in observations. An X-shaped structure naturally arises in the formation of bar/boxy bulges, and is mainly associated with orbits trapped around the vertically-extended x_1 family. Like the bar in our model, the X-shaped structure tilts away from the Sun--Galactic center line by 20 degrees. The X-shaped structure becomes increasingly symmetric about the disk plane, so the observed symmetry may indicate that it formed at least a few billion years ago. The existence of the vertical X-shaped structure suggests that the formation of the Milky Way bulge is shaped mainly by internal disk dynamical instabilities.
The bandwith, sensitivity and sheer survey speed of the SKA offers unique potential for deep spectroscopic surveys of the Milky Way. Within the frequency bands available to the SKA lie many transitions that trace the ionised, radical and molecular co mponents of the interstellar medium and which will revolutionise our understanding of many physical processes. In this chapter we describe the impact on our understanding of the Milky Way that can be achieved by spectroscopic SKA surveys, including out of the box early science with radio recombination lines, Phase 1 surveys of the molecular ISM using anomalous formaldehyde absorption, and full SKA surveys of ammonia inversion lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا