ترغب بنشر مسار تعليمي؟ اضغط هنا

MSSM with Dimension-five Operators (MSSM_5)

177   0   0.0 ( 0 )
 نشر من قبل Dumitru Ghilencea
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a general analysis of the R-parity conserving dimension-five operators that can be present beyond the Minimal Supersymmetric Standard Model. Not all these operators are actually independent. We present a method which employs spurion-dependent field redefinitions that removes this redundancy and establishes the minimal, irreducible set of these dimension-five operators. Their potential effects on the MSSM Higgs sector are discussed to show that the tree level bound $m_hleq m_Z$ cannot be easily lifted within the approximations used, and quantum corrections are still needed to satisfy the LEPII bound. An ansatz is provided for the structure of the remaining couplings in the irreducible set of D=5 operators, which avoids phenomenological constraints from flavor changing neutral currents. The minimal set of operators brings new couplings in the effective Lagrangian, notably wrong-Higgs Yukawa couplings and contact fermion-fermion-scalar-scalar interactions, whose effects are expected to be larger than those generated in the MSSM at loop or even tree level. This has implications in particular for LHC searches for supersymmetry by direct squark production.



قيم البحث

اقرأ أيضاً

Extensions of the standard model with low-energy supersymmetry generically allow baryon- and lepton-number violating operators of dimension four and five, yielding rapid proton decay. The dimension-four operators are usually forbidden by matter parit y. We investigate to what extent the appearance of dimension-five operators at the Planck scale may be constrained by the different grand-unified gauge groups. Dimension-five operators are suppressed in models based on E_6 and SU(3)_C x SU(3)_L x SU(3)_R, where four matter fields do not form a gauge singlet. An intermediate scale offers the possibility to sufficiently suppress these dimension-five operators.
In the framework of the effective field theory approach to heavy supersymmetry radiative corrections in the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) for the effective potential decomposition up to the dimension-six operators a re calculated. Symbolic expressions for the threshold corrections induced by $F$- and $D$- soft supersymmetry breaking terms are derived and the Higgs boson mass spectrum respecting the condition $m_h=$125 GeV for the lightest $CP$-even scalar is evaluated.
In this letter, we examine a new class of CPT-even nonminimal interactions, between fermions and photons, deprived of higher order derivatives, that yields electric dipole moment (EDM) and magnetic dipole moment (MDM) in the context of the Dirac equa tion. The couplings are dimension-five CPT-even and Lorentz-violating nonminimal structures, composed of a rank-2 tensor, $T_{mu u}$, the electromagnetic tensor, and gamma matrices, being addressed in its axial and non-axial Hermiti
The possibility of identification of an observable CMS $mu^+ mu^-$ excess at 28 GeV in the channel $ppto mu^+ mu^- b bar b$ at $sqrt{s}$=8 TeV and 13 TeV as a manifestation of one of the minimal supersymmetric standard model (MSSM) Higgs bosons is in vestigated. The MSSM parametric scenarios in the regime of large threshold corrections involving low-mass CP-odd scalar, a 125 GeV CP-even scalar and other Higgs bosons with suitable masses are found, where the alignment limit conditions for the Higgs couplings are respected. Perturbative unitarity bounds and constraints on the electroweak vacuum stability are discussed in the regime of substantial couplings with the top- and bottom superpartners. LHC phenomenology including top-quark decay in such a regime is analyzed.
The consistent recursive subtraction of UV divergences order by order in the loop expansion for spontaneously broken effective field theories with dimension-6 derivative operators is presented for an Abelian gauge group. We solve the Slavnov-Taylor i dentity to all orders in the loop expansion by homotopy techniques and a suitable choice of invariant field coordinates (named bleached variables) for the linearly realized gauge group. This allows one to disentangle the gauge-invariant contributions to off-shell 1-PI amplitudes from those associated with the gauge-fixing and (generalized) non-polynomial field redefinitions (that do appear already at one loop). The tools presented can be easily generalized to the non-Abelian case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا