ترغب بنشر مسار تعليمي؟ اضغط هنا

A light CP-odd Higgs boson of the MSSM Higgs sector extended by dimension-six operators

147   0   0.0 ( 0 )
 نشر من قبل Mikhail Dubinin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of identification of an observable CMS $mu^+ mu^-$ excess at 28 GeV in the channel $ppto mu^+ mu^- b bar b$ at $sqrt{s}$=8 TeV and 13 TeV as a manifestation of one of the minimal supersymmetric standard model (MSSM) Higgs bosons is investigated. The MSSM parametric scenarios in the regime of large threshold corrections involving low-mass CP-odd scalar, a 125 GeV CP-even scalar and other Higgs bosons with suitable masses are found, where the alignment limit conditions for the Higgs couplings are respected. Perturbative unitarity bounds and constraints on the electroweak vacuum stability are discussed in the regime of substantial couplings with the top- and bottom superpartners. LHC phenomenology including top-quark decay in such a regime is analyzed.

قيم البحث

اقرأ أيضاً

In the framework of the effective field theory approach to heavy supersymmetry radiative corrections in the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) for the effective potential decomposition up to the dimension-six operators a re calculated. Symbolic expressions for the threshold corrections induced by $F$- and $D$- soft supersymmetry breaking terms are derived and the Higgs boson mass spectrum respecting the condition $m_h=$125 GeV for the lightest $CP$-even scalar is evaluated.
CP-violating effects in the Higgs sector of the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) are induced by potentially large higher-order corrections. As a consequence, all three neutral Higgs bosons can mix with each other. Recent results for loop corrections in the Higgs sector of the cMSSM are reviewed. Results for propagator-type corrections of O(alpha_t alpha_s) and complete one-loop results for Higgs cascade decays of the kind h_a -> h_b h_c are summarised, and the proper treatment of external Higgs bosons in Higgs-boson production and decay processes is discussed.
We study the effect of explicit CP violation in the Higgs sectors of the MSSM in the di-photon decay of the lightest CP-mixed Higgs state. Further it is shown that the gluon fusion production mechanism along with the di-photon decay enhances CP-viola ting effects for a large set of suitably chosen parameter values.
For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minima l Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M_h in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.
The signal discovered in the Higgs searches at the LHC can be interpreted as the Higgs boson of the Standard Model as well as the light CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM). In this context the measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role. This precision can be improved substantially below the level of about 50 MeV at the future International Linear Collider (ILC). Within the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should match the one of the experimental measurements. The relatively high experimentally observed value of the mass of about 125.6 GeV has led to many investigations where the supersymmetric (SUSY) partners of the top quark have masses in the multi-TeV range. We review the recent improvements for the prediction for M_h in the MSSM for large scalar top masses. They were obtained by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. However, substantial further improvements will be needed to reach the ILC precision. The newly obtained corrections to M_h are included into the code FeynHiggs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا