ترغب بنشر مسار تعليمي؟ اضغط هنا

A Population of Radio-loud Narrow Line Seyfert 1 Galaxies with Blazar-like Properties?

129   0   0.0 ( 0 )
 نشر من قبل Weimin Yuan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Yuan




اسأل ChatGPT حول البحث

(abridged) We present a comprehensive study of a sample of 23 genuine radio-loud NLS1 galaxies which have the radio-loudness parameters greater than 100. The radio sources of the sample are ubiquitously compact. A significant fraction of these objects show interesting radio to X-ray properties that are unusual to most of the previously known radio-loud NLS1 AGN, but are reminiscent of blazars. These include flat radio spectra, large amplitude flux and spectral variability, compact VLBI cores, very high brightness temperatures derived from variability, enhanced optical emission in excess of the normal ionising continuum, flat X-ray spectra, and blazar-like SEDs. We interpret them as evidence for the postulated blazar nature of these very radio-loud NLS1 AGN, which might possess at least moderately relativistic jets. Intrinsically, some of the objects have relatively low radio power and would have been classified as radio-intermediate AGN. The black hole masses are estimated to be within 10^{6-8}Msun, and the inferred Eddington ratios are around unity. The results imply that radio-loud AGN may be powered by black holes with moderate masses (10^{6-7}Msun) accreting at high rates. We find that a significant fraction of the objects, despite having strong emission lines, resemble high-energy peaked BL Lacs (HBL) in their SED. Given the peculiarities of blazar-like NLS1 galaxies, questions arise as to whether they are plain downsizing extensions of normal radio-loud AGN, or whether they form a previously unrecognised population.



قيم البحث

اقرأ أيضاً

81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin g, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
We performed phase-reference very long baseline interferometry (VLBI) observations on five radio-loud narrow-line Seyfert 1 galaxies (NLS1s) at 8.4 GHz with the Japanese VLBI Network (JVN). Each of the five targets (RXS J08066+7248, RXS J16290+4007, RXS J16333+4718, RXS J16446+2619, and B3 1702+457) in milli-Jansky levels were detected and unresolved in milli-arcsecond resolutions, i.e., with brightness temperatures higher than 10^7 K. The nonthermal processes of active galactic nuclei (AGN) activity, rather than starbursts, are predominantly responsible for the radio emissions from these NLS1s. Out of the nine known radio-loud NLS1s, including the ones chosen for this study, we found that the four most radio-loud objects exclusively have inverted spectra. This suggests a possibility that these NLS1s are radio-loud due to Doppler beaming, which can apparently enhance both the radio power and the spectral frequency.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
76 - D. J. Whalen 2006
We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit ~1 m Jy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of ~5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا