ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive Code Construction for Random Networks

138   0   0.0 ( 0 )
 نشر من قبل Vitaly Skachek
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Vitaly Skachek




اسأل ChatGPT حول البحث

A modification of Koetter-Kschischang codes for random networks is presented (these codes were also studied by Wang et al. in the context of authentication problems). The new codes have higher information rate, while maintaining the same error-correcting capabilities. An efficient error-correcting algorithm is proposed for these codes.



قيم البحث

اقرأ أيضاً

143 - Tiben Che , Gwan Choi 2016
This paper proposes a polar code construction scheme that reduces constituent-code supplemented decoding latency. Constituent codes are the sub-codewords with specific patterns. They are used to accelerate the successive cancellation decoding process of polar code without any performance degradation. We modify the traditional construction approach to yield increased number of desirable constituent codes that speeds the decoding process. For (n,k) polar code, instead of directly setting the k best and (n-k) worst bits to the information bits and frozen bits, respectively, we swap the locations of some information and frozen bits carefully according to the qualities of their equivalent channels. We conducted the simulation of 1024 and 2048 bits length polar codes with multiple rates and analyzed the decoding latency for various length codes. The numerical results show that the proposed construction scheme generally is able to achieve at least around 20% latency deduction with an negligible loss in gain with carefully selected optimization threshold.
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define a surrogate channel model and propose different protograph low-density parity-check code designs. The proposed codes are both tested in a setup where the physical layer is abstracted, as well as on a more realistic channel model, where finite-length physical layer simulations of the entire asynchronous random access scheme, including decoding are carried out. We find that the abstracted physical layer model overestimates the performance when short blocks are considered. Additionally, the optimized codes show gains in supported channel traffic - a measure of the number of terminals that can be concurrently accommodated on the channel - of around 17% at a packet loss rate of 10^{-2} w.r.t. off-the-shelf codes.
Gaussian approximation (GA) is widely used to construct polar codes. However when the code length is long, the subchannel selection inaccuracy due to the calculation error of conventional approximate GA (AGA), which uses a two-segment approximation f unction, results in a catastrophic performance loss. In this paper, new principles to design the GA approximation functions for polar codes are proposed. First, we introduce the concepts of polarization violation set (PVS) and polarization reversal set (PRS) to explain the essential reasons that the conventional AGA scheme cannot work well for the long-length polar code construction. In fact, these two sets will lead to the rank error of subsequent subchannels, which means the orders of subchannels are misaligned, which is a severe problem for polar code construction. Second, we propose a new metric, named cumulative-logarithmic error (CLE), to quantitatively evaluate the remainder approximation error of AGA in logarithm. We derive the upper bound of CLE to simplify its calculation. Finally, guided by PVS, PRS and CLE bound analysis, we propose new construction rules based on a multi-segment approximation function, which obviously improve the calculation accuracy of AGA so as to ensure the excellent performance of polar codes especially for the long code lengths. Numerical and simulation results indicate that the proposed AGA schemes are critical to construct the high-performance polar codes.
We introduce a general recursive method to construct continuum random trees (CRTs) from independent copies of a random string of beads, that is, any random interval equipped with a random discrete probability measure, and from related structures. We prove the existence of these CRTs as a new application of the fixpoint method for recursive distribution equations formalised in high generality by Aldous and Bandyopadhyay. We apply this recursive method to show the convergence to CRTs of various tree growth processes. We note alternative constructions of existing self-similar CRTs in the sense of Haas, Miermont and Stephenson, and we give for the first time constructions of random compact R-trees that describe the genealogies of Bertoins self-similar growth fragmentations. In forthcoming work, we develop further applications to embedding problems for CRTs, providing a binary embedding of the stable line-breaking construction that solves an open problem of Goldschmidt and Haas.
Millimeter-wave (mmWave) communications rely on directional transmissions to overcome severe path loss. Nevertheless, the use of narrow beams complicates the initial access procedure and increase the latency as the transmitter and receiver beams shou ld be aligned for a proper link establishment. In this paper, we investigate the feasibility of random beamforming for the cell-search phase of initial access. We develop a stochastic geometry framework to analyze the performance in terms of detection failure probability and expected latency of initial access as well as total data transmission. Meanwhile, we compare our scheme with the widely used exhaustive search and iterative search schemes, in both control plane and data plane. Our numerical results show that, compared to the other two schemes, random beamforming can substantially reduce the latency of initial access with comparable failure probability in dense networks. We show that the gain of the random beamforming is more prominent in light traffics and low-latency services. Our work demonstrates that developing complex cell-discovery algorithms may be unnecessary in dense mmWave networks and thus shed new lights on mmWave network design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا