ﻻ يوجد ملخص باللغة العربية
We consider the map $T_{alpha,beta}(x):= beta x + alpha mod 1$, which admits a unique probability measure of maximal entropy $mu_{alpha,beta}$. For $x in [0,1]$, we show that the orbit of $x$ is $mu_{alpha,beta}$-normal for almost all $(alpha,beta)in[0,1)times(1,infty)$ (Lebesgue measure). Nevertheless we construct analytic curves in $[0,1)times(1,infty)$ along them the orbit of $x=0$ is at most at one point $mu_{alpha,beta}$-normal. These curves are disjoint and they fill the set $[0,1)times(1,infty)$. We also study the generalized $beta$-maps (in particular the tent map). We show that the critical orbit $x=1$ is normal with respect to the measure of maximal entropy for almost all $beta$.
We give an algorithm, based on the $phi$-expansion of Parry, in order to compute the topological entropy of a class of shift spaces. The idea is the solve an inverse problem for the dynamical systems $beta x+alpha mod1$.The first part is an expositio
We consider the minimal average action (Mathers $beta$ function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the $beta$-function
Poincares last geometric theorem (Poincare-Birkhoff Theorem) states that any area-preserving twist map of annulus has at least two fixed points. We replace the area-preserving condition with a weaker intersection property, which states that any essen
For a map of the unit interval with an indifferent fixed point, we prove an upper bound for the variance of all observables of $n$ variables $K:[0,1]^ntoR$ which are componentwise Lipschitz. The proof is based on coupling and decay of correlation pro
We describe an algorithm for distinguishing hyperbolic components in the parameter space of quadratic rational maps with a periodic critical point. We then illustrate computer images of the hyperbolic components of the parameter spaces V1 - V4, which