ﻻ يوجد ملخص باللغة العربية
Recent experiments with superconducting qubits are motivated by the goal of fabricating a quantum computer, but at the same time they illuminate the more fundamental aspects of quantum mechanics. In this paper we analyze the physics of switching current measurements from the point of view of macroscopic quantum mechanics.
A new technique was recently developed to approximate the solution of the Schroedinger equation. This approximation (dubbed ERS) is shown to yield a better accuracy than the WKB-approximation. Here, we review the ERS approximation and its application
The energies of valley-orbit states in silicon quantum dots are determined by an as yet poorly understood interplay between interface roughness, orbital confinement, and electron interactions. Here, we report measurements of one- and two-electron val
We develop a physical model for how galactic disks survive and/or are destroyed in interactions. Based on dynamical arguments, we show gas primarily loses angular momentum to internal torques in a merger. Gas within some characteristic radius (a func
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cau
The goal of this tutorial is to explain step-by-step how to implement physics-based learning for the rapid prototyping of a computational imaging system. We provide a basic overview of physics-based learning, the construction of a physics-based netwo