ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximately Counting Embeddings into Random Graphs

281   0   0.0 ( 0 )
 نشر من قبل Shiva Kasiviswanathan
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.



قيم البحث

اقرأ أيضاً

189 - Ewan Davies , Will Perkins 2021
We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $alpha_c(Delta)$ and provide (i) for $alpha < alpha_c(Delta)$ randomiz ed polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $alpha n$ in $n$-vertex graphs of maximum degree $Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $alpha>alpha_c(Delta)$. The critical density is the occupancy fraction of hard core model on the clique $K_{Delta+1}$ at the uniqueness threshold on the infinite $Delta$-regular tree, giving $alpha_c(Delta)simfrac{e}{1+e}frac{1}{Delta}$ as $Deltatoinfty$.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induce d path on $t$ vertices, computes a coloring with $max{5,2lceil{frac{t-1}{2}}rceil-2}$ many colors. If the input graph is triangle-free, we only need $max{4,lceil{frac{t-1}{2}}rceil+1}$ many colors. The running time of our algorithm is $O((3^{t-2}+t^2)m+n)$ if the input graph has $n$ vertices and $m$ edges.
We count orientations of $G(n,p)$ avoiding certain classes of oriented graphs. In particular, we study $T_r(n,p)$, the number of orientations of the binomial random graph $G(n,p)$ in which every copy of $K_r$ is transitive, and $S_r(n,p)$, the number of orientations of $G(n,p)$ containing no strongly connected copy of $K_r$. We give the correct order of growth of $log T_r(n,p)$ and $log S_r(n,p)$ up to polylogarithmic factors; for orientations with no cyclic triangle, this significantly improves a result of Allen, Kohayakawa, Mota and Parente. We also discuss the problem for a single forbidden oriented graph, and state a number of open problems and conjectures.
The problem of computing a bi-Lipschitz embedding of a graphical metric into the line with minimum distortion has received a lot of attention. The best-known approximation algorithm computes an embedding with distortion $O(c^2)$, where $c$ denotes th e optimal distortion [Bu{a}doiu etal~2005]. We present a bi-criteria approximation algorithm that extends the above results to the setting of emph{outliers}. Specifically, we say that a metric space $(X,rho)$ admits a $(k,c)$-embedding if there exists $Ksubset X$, with $|K|=k$, such that $(Xsetminus K, rho)$ admits an embedding into the line with distortion at most $c$. Given $kgeq 0$, and a metric space that admits a $(k,c)$-embedding, for some $cgeq 1$, our algorithm computes a $({mathsf p}{mathsf o}{mathsf l}{mathsf y}(k, c, log n), {mathsf p}{mathsf o}{mathsf l}{mathsf y}(c))$-embedding in polynomial time. This is the first algorithmic result for outlier bi-Lipschitz embeddings. Prior to our work, comparable outlier embeddings where known only for the case of additive distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا