ﻻ يوجد ملخص باللغة العربية
We count orientations of $G(n,p)$ avoiding certain classes of oriented graphs. In particular, we study $T_r(n,p)$, the number of orientations of the binomial random graph $G(n,p)$ in which every copy of $K_r$ is transitive, and $S_r(n,p)$, the number of orientations of $G(n,p)$ containing no strongly connected copy of $K_r$. We give the correct order of growth of $log T_r(n,p)$ and $log S_r(n,p)$ up to polylogarithmic factors; for orientations with no cyclic triangle, this significantly improves a result of Allen, Kohayakawa, Mota and Parente. We also discuss the problem for a single forbidden oriented graph, and state a number of open problems and conjectures.
Let $S_k(n)$ be the maximum number of orientations of an $n$-vertex graph $G$ in which no copy of $K_k$ is strongly connected. For all integers $n$, $kgeq 4$ where $ngeq 5$ or $kgeq 5$, we prove that $S_k(n) = 2^{t_{k-1}(n)}$, where $t_{k-1}(n)$ is t
Formulas are derived for counting walks in the Kronecker product of graphs, and the associated spectral distributions are obtained by the Mellin convolution of probability distributions. Two-dimensional restricted lattices admitting the Kronecker pro
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
A graph G is 1-extendable if every edge belongs to at least one 1-factor. Let G be a graph with a 1-factor F. Then an even F-orientation of G is an orientation in which each F-alternating cycle has exactly an even number of edges directed in the same
We establish mild conditions under which a possibly irregular, sparse graph $G$ has many strong orientations. Given a graph $G$ on $n$ vertices, orient each edge in either direction with probability $1/2$ independently. We show that if $G$ satisfies