ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-atom doping for quantum device development in diamond and silicon

170   0   0.0 ( 0 )
 نشر من قبل Thomas Schenkel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in single atoms, such as proposed quantum computers. We describe a single atom injector, in which the imaging and alignment capabilities of a scanning force microscope (SFM) are integrated with ion beams from a series of ion sources and with sensitive detection of current transients induced by incident ions. Ion beams are collimated by a small hole in the SFM tip and current changes induced by single ion impacts in transistor channels enable reliable detection of single ion hits. We discuss resolution limiting factors in ion placement and processing and paths to single atom (and color center) array formation for systematic testing of quantum computer architectures in silicon and diamond.

قيم البحث

اقرأ أيضاً

Colour centres with long-lived spins are established platforms for quantum sensing and quantum information applications. Colour centres exist in different charge states, each of them with distinct optical and spin properties. Application to quantum t echnology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the colour centre in an integrated silicon carbide opto-electronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active colour centres for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into us eful semiconductors faces doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion-implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional boron doping in natural SCD without any phase transitions or lattice damage which can be readily realized with thermal diffusion at relatively low temperature. For the boron doping, we employ a unique dopant carrying medium: heavily doped Si nanomembranes. We further demonstrate selectively doped high-voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high-voltage power conversion systems and for other novel diamond-based electronics.
83 - S. Freer , S. Simmons , A. Laucht 2016
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a `quantum memory while idle. The $^{31}$P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the $^{31}$P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched $^{28}$Si. The fidelity of the memory process is characterised via both state and process tomography. We report an overall process fidelity of $F_p =$81${pm}$7%, a memory fidelity ($F_m$) of over 90%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following high-power radiofrequency pulses.
We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high quality, low stress CVD diamond film by using temperature dependent luminescence spectroscopy in the temperature range 5-295 K. We investigate in detail the temperature dependent fine structure of the zero-phonon-line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature dependent homogeneous broadening and blue shifts by about 20 cm-1 upon cooling from room temperature to 5 K. We employ excitation power dependent g(2) measurements to explore the temperature dependent internal population dynamics of single SiV centres and infer almost temperature independent dynamics.
The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrati ng quantum interference. Here we show high fidelity optical initialization and readout of electronic spin in a single $mathrm{SiV}^-$ center with a spin relaxation time of $T_1=2.4pm0.2$ ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of $T_2^star=35pm3$ ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherences by engineering interactions with phonons. These results establish the $mathrm{SiV}^-$ center as a solid-state spin-photon interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا