ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust entanglement of a micromechanical resonator with output optical fields

53   0   0.0 ( 0 )
 نشر من قبل Claudiu Genes
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform an analysis of the optomechanical entanglement between the experimentally detectable output field of an optical cavity and a vibrating cavity end-mirror. We show that by a proper choice of the readout (mainly by a proper choice of detection bandwidth) one can not only detect the already predicted intracavity entanglement but also optimize and increase it. This entanglement is explained as being generated by a scattering process owing to which strong quantum correlations between the mirror and the optical Stokes sideband are created. All-optical entanglement between scattered sidebands is also predicted and it is shown that the mechanical resonator and the two sideband modes form a fully tripartite-entangled system capable of providing practicable and robust solutions for continuous variable quantum communication protocols.


قيم البحث

اقرأ أيضاً

In this work we examine the entanglement of the output signal-idler squeezed vacuum state in the Heisenberg picture as a function of the coupling and internal propagation loss parameters of a microring resonator. Using the log-negativity as a measure of entanglement for a mixed Gaussian state, we examine the competitive effects of the transfer matrix that encodes the classical phenomenological loss, as well as the matrix that that incorporates the coupling and internal propagation loss due to the quantum Langevin noise fields required to preserve unitarity of the composite system,(signal-idler) and environment (noise) structure.
We propose a protocol for entanglement swapping which involves tripartite systems. The generation of remote entanglement induced by the Bell measurement can be easily certified by additional local measurements. We illustrate the protocol in the case of continuous variable systems where the certification is effective for an appropriate class of three-mode Gaussian states. We then apply the protocol to optomechanical systems, showing how mechanical entanglement between two remote micromechanical resonators can be generated and certified via local optical measurements.
We study the entangling power of a nanoelectromechanical system (NEMS) simultaneously interacting with two separately trapped ions. To highlight this entangling capability, we consider a special regime where the ion-ion coupling does not generate ent anglement in the system, and any resulting entanglement will be the result of the NEMS acting as an entangling device. We study the dynamical behavior of the bipartite NEMS-induced ion-ion entanglement as well as the tripartite entanglement of the whole system (ions+NEMS). We found some quite remarkable phenomena in this hybrid system. For instance, the two trapped ions initially uncorrelated and prepared in coherent states can become entangled by interacting with a nanoelectromechanical resonator (also prepared in a coherent state) as soon as the ion-NEMS coupling achieve a certain value, and this can be controlled by external voltage gate on the NEMS device.
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm and cold atomic vapours, individual atoms and ions, and defects in solid-state systems. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres. The entangled quantum state is distributed by an optical field at a designed wavelength near 1550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
We examine the entanglement between two qubits, supposed to be remotely located and driven by independent quantized optical fields. No interaction is allowed between the qubits, but their degree of entanglement changes as a function of time. We repor t a collapse and revival of entanglement that is similar to the collapse and revival of single-atom properties in cavity QED.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا