ﻻ يوجد ملخص باللغة العربية
Based on quantum complementary relations (QCRs) and a purification scenario, we analyze a class of N-qubit mixed states that are entangled but do not have two-, and genuine three-, four-, ..., N-qubit entanglements. It is shown that entanglement (one-tangle or negativity) in these mixed states is closely related to the QCR entanglement of their purified states. In particular, it is elaborated that when the mixed state does not have multipartite tangles (two- and higher tangles), its entanglement is actually a kind of genuine multipartite QCR entanglement between the system and its environment.
Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to sol
We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with $n$ parties each holding a system of dimension at least $n-1$. This basis is generated via a quantum circuit made of control-Discrete Fourier Tr
New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the
Beyond the simplest case of bipartite qubits, the composite Hilbert space of multipartite systems is largely unexplored. In order to explore such systems, it is important to derive analytic expressions for parameters which characterize the systems st
We generalize the Schmidt-correlated states to multipartite systems. The related equivalence under SLOCC, the separability, entanglement witness, entanglement measures of negativity, concurrence and relative entropy are investigated in detail for the generalized Schmidt-correlated states.