ترغب بنشر مسار تعليمي؟ اضغط هنا

Multipartite Nonlocality without Entanglement in Many Dimensions

109   0   0.0 ( 0 )
 نشر من قبل Julien Niset Mr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with $n$ parties each holding a system of dimension at least $n-1$. This basis is generated via a quantum circuit made of control-Discrete Fourier Transform gates acting on the computational basis. The simplicity of our quantum circuit allows for an intuitive understanding of this new type of nonlocality. We also show how this circuit can be used to construct Unextendible Product Bases and their associated Bound Entangled States. To our knowledge, this is the first method which, given a general Hilbert space $bigotimes_{i=1}^n {cal H}_{d_i}$ with $d_ile n-1$, makes it possible to construct (i) a basis exhibiting Nonlocality Without Entanglement, (ii) an Unextendible Product Basis, and (iii) a Bound Entangled state.

قيم البحث

اقرأ أيضاً

In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ or thogonal product states, which is one order of magnitude less than the number of basis states $d^3$. Secondly, we give the explicit form of strongly nonlocal orthogonal product basis in $mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3$ quantum system, where four is the largest known number of subsystems in which there exists strong quantum nonlocality up to now. Both the two results positively answer the open problems in [Halder, textit{et al.}, PRL, 122, 040403 (2019)], that is, there do exist and even smaller number of quantum states can demonstrate strong quantum nonlocality without entanglement.
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheles s violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to sol ve this problem both in single entanglement and network scenarios. We firstly propose a local model for characterizing all entangled states that are breaking for losing particles. This implies a simple criterion for witnessing single entanglement such as generalized GHZ states and Dicke states. It further provides an efficient witness for characterizing entangled quantum networks depending mainly on the connectivity of network configurations such as $k$-independent quantum networks, completely connected quantum networks, and $k$-connected quantum networks. These networks are universal resources for measurement-based quantum computations. The strong nonlocality can be finally verified by using nonlinear inequalities. These results show distinctive features of both single entangled systems and entangled quantum networks.
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent operations. The results are also generalized to qudit case. Furthermore, rigorous relations between the quantum coherence of a single-partite state and the genuine multipartite quantum entanglement, as well as the genuine three-qubit quantum nonlocality are established.
The nonlocal correlations of multipartite entangled states can be reproduced by a classical model if sufficiently many parties join together or if sufficiently many parties broadcast their measurement inputs. The maximal number m of groups and the mi nimal number k of broadcasting parties that allow for the reproduction of a given set of correlations quantify their multipartite nonlocal content. We show how upper-bounds on m and lower-bounds on k can be computed from the violation of the Mermin-Svetlichny inequalities. While n-partite GHZ states violate these inequalities maximally, we find that W states violate them only by a very small amount.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا