ﻻ يوجد ملخص باللغة العربية
For an embedded singly periodic minimal surface M with genus bigger than or equal to 4 and annular ends, some weak symmetry hypotheses imply its congruence with one of the Hoffman-Wohlgemuth examples. We give a very geometrical proof of this fact, along which they come out many valuable clues for the understanding of these surfaces.
We get a continuous one-parameter new family of embedded minimal surfaces, of which the period problems are two-dimensional. Moreover, one proves that it has Scherk second surface and Hoffman-Wohlgemuth example as limit-members.
This is a survey of results on surfaces in noncommutative three-dimensional Lie groups obtained by using the Weierstrass (spinor) representation of surfaces. It is based on the talk given at the conference Geometry related to the theory of integrable systems (RIMS, Kyoto, September 2007).
We provide a characterisation of strongly normalising terms of the lambda-mu-calculus by means of a type system that uses intersection and product types. The presence of the latter and a restricted use of the type omega enable us to represent the par
The main result of this paper is an expression of the flag curvature of a submanifold of a Randers-Minkowski space $({mathscr V},F)$ in terms of invariants related to its Zermelo data $(h,W)$. More precisely, these invariants are the sectional curvat
A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in thr