ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic simulations of the phase-transition-induced collapse of neutron stars

173   0   0.0 ( 0 )
 نشر من قبل Ernazar Abdikamalov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An increase in the central density of a neutron star may trigger a phase transition from hadronic matter to deconfined quark matter in the core, causing it to collapse to a more compact hybrid-star configuration. We present a study of this, building on previous work by Lin et al. (2006). We follow them in considering a supersonic phase transition and using a simplified equation of state, but our calculations are general relativistic (using 2D simulations in the conformally flat approximation) as compared with their 3D Newtonian treatment. We also improved the treatment of the initial phase transformation, avoiding the introduction of artificial convection. As before, we find that the emitted gravitational-wave spectrum is dominated by the fundamental quasi-radial and quadrupolar pulsation modes but the strain amplitudes are much smaller than suggested previously, which is disappointing for the detection prospects. However, we see significantly smaller damping and observe a nonlinear mode resonance which substantially enhances the emission in some cases. We explain the damping mechanisms operating, giving a different view from the previous work. Finally, we discuss the detectability of the gravitational waves, showing that the signal-to-noise ratio for current or second generation interferometers could be high enough to detect such events in our Galaxy, although third generation detectors would be needed to observe them out to the Virgo cluster, which would be necessary for having a reasonable event rate.



قيم البحث

اقرأ أيضاً

We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which r esult in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180$^{circ}$ out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.
(Abridged.) The accretion-induced collapse (AIC) of a white dwarf (WD) may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting whi te dwarfs in Type Ia supernovae. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a Type III signal in the literature. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. In rapidly differentially rotating models, the disk mass can be as large as ~0.8-Msun. Slowly and/or uniformly rotating models produce much smaller disks. Finally, we find that the postbounce cores of rapidly spinning white dwarfs can reach sufficiently rapid rotation to develop a nonaxisymmetric rotational instability.
The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-47 15, and 4U 1702-429) using the phenomenologically constructed EoS models to search for a potential first-order phase transition. Our phenomenological EoS models take the advantages of current widely used parametrizing methods, which are flexible enough to resemble various theoretical EoS models. We find that the current observation data are still not informative enough to support/rule out phase transition, due to the comparable evidences for models with and without phase transition. However, the bulk properties of the canonical $1.4,M_odot$ NS and the pressure at around $2rho_{rm sat}$ are well constrained by the data, where $rho_{rm sat}$ is the nuclear saturation density. Moreover, strong phase transition at low densities is disfavored, and the $1sigma$ lower bound of transition density is constrained to $1.84rho_{rm sat}$.
281 - C. D. Ott 2012
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27-solar-mass progenitor was studied in 2D by B. Mueller et al. (ApJ 761:72, 2012), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
149 - C. Reisswig , R. Haas , C. D. Ott 2012
We present a new three-dimensional general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neut ron star coalescence. We make use of a set of adapted curvi-linear grids (multipatches) coupled with flux-conservative cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational-wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution shock capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multi-rate Runge-Kutta time integration scheme for efficiency, evolving the fluid with second-order and the spacetime geometry with fourth-order integration, respectively. We validate our code by a number of benchmark problems: a rotating stellar collapse model, an excited neutron star, neutron star collapse to a black hole, and binary neutron star coalescence. The test problems, especially the latter, greatly benefit from higher resolution in the gravitational-wave extraction zone, causally disconnected outer boundaries, and application of Cauchy-characteristic gravitational-wave extraction. We show that we are able to extract convergent gravitational-wave modes up to (l,m)=(6,6). This study paves the way for more realistic and detailed studies of compact objects and stellar collapse in full three dimensions and in large computational domains. The multipatch infrastructure and the improvements to mesh refinement and hydrodynamics codes discussed in this paper will be made available as part of the open-source Einstein Toolkit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا