ﻻ يوجد ملخص باللغة العربية
We use angle resolved photoemission spectroscopy (ARPES) to study the momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals. We find that the Gamma hole pocket is fully gapped below the superconducting transition temperature. The value of the superconducting gap is 15 +- 1.5 meV and its anisotropy around the hole pocket is smaller than 20% of this value. This is consistent with an isotropic or anisotropic s-wave symmetry of the order parameter or exotic d-wave symmetry with nodes located off the Fermi surface sheets. This is a significant departure from the situation in the cuprates, pointing to possibility that the superconductivity in the iron arsenic based system arises from a different mechanism.
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. Howeve
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i
Electronic structure of newly synthesized single crystals of calcium iron arsenide doped with sodium with Tc ranging from 33 to 14 K has been determined by angle-resolved photoemission spectroscopy (ARPES). The measured band dispersion is in general
We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe$_{0.95}$Co$_{0.05}$As ($T_{c}sim$18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfac
We have performed angle-resolved photoemission spectroscopy on the overdoped Ba$_{0.3}$K$_{0.7}$Fe$_2$As$_2$ superconductor ($T_c$ = 22 K). We demonstrate that the superconducting (SC) gap on each Fermi surface (FS) is nearly isotropic whereas the ga