ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison between shape optimization and volumic level set approximation for geometrical functionals

97   0   0.0 ( 0 )
 نشر من قبل Thomas Milcent
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف T. Milcent




اسأل ChatGPT حول البحث

We propose to differentiate a general curvature functional with two different approaches. In the first one we compute the derivative with the tools of shape optimization and in the second one we compute the derivative of a volumic approximation of the functional with respect to a level set function. We show that the two previous approaches give the same result.



قيم البحث

اقرأ أيضاً

We consider shape optimization problems for general integral functionals of the calculus of variations that may contain a boundary term. In particular, this class includes optimization problems governed by elliptic equations with a Robin condition on the free boundary. We show the existence of an optimal domain under rather general assumptions and we study the cases when the optimal domains are open sets and have a finite perimeter.
A new fast algebraic method for obtaining an $mathcal{H}^2$-approximation of a matrix from its entries is presented. The main idea behind the method is based on the nested representation and the maximum-volume principle to select submatrices in low-r ank matrices. A special iterative approach for the computation of so-called representing sets is established. The main advantage of the method is that it uses only the hierarchical partitioning of the matrix and does not require special proxy surfaces to be selected in advance. The numerical experiments for the electrostatic problem and for the boundary integral operator confirm the effectiveness and robustness of the approach. The complexity is linear in the matrix size and polynomial in the ranks. The algorithm is implemented as an open-source Python package that is available online.
In this work, we present a new efficient method for convex shape representation, which is regardless of the dimension of the concerned objects, using level-set approaches. Convexity prior is very useful for object completion in computer vision. It is a very challenging task to design an efficient method for high dimensional convex objects representation. In this paper, we prove that the convexity of the considered object is equivalent to the convexity of the associated signed distance function. Then, the second order condition of convex functions is used to characterize the shape convexity equivalently. We apply this new method to two applications: object segmentation with convexity prior and convex hull problem (especially with outliers). For both applications, the involved problems can be written as a general optimization problem with three constraints. Efficient algorithm based on alternating direction method of multipliers is presented for the optimization problem. Numerical experiments are conducted to verify the effectiveness and efficiency of the proposed representation method and algorithm.
Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. We propos e a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Specifically, we are able to delay or advance a given bifurcation point to a given parameter value, often to within machine precision. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, the Moore--Spence system, that characterize the location of the bifurcation points. Numerical experiments on the Allen--Cahn, Navier--Stokes, and hyperelasticity equations demonstrate the effectiveness of this technique in a wide range of settings.
A general adaptive refinement strategy for solving linear elliptic partial differential equation with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and No bile in 2018 (SIAM J. Numer. Anal., 56, 3121--3143) to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in this paper (part I). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, will be discussed in part II of this work. The codes used to generate the numerical results are available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا