ﻻ يوجد ملخص باللغة العربية
A general adaptive refinement strategy for solving linear elliptic partial differential equation with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile in 2018 (SIAM J. Numer. Anal., 56, 3121--3143) to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in this paper (part I). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, will be discussed in part II of this work. The codes used to generate the numerical results are available online.
The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to con
This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As
The need for multiple interactive, real-time simulations using different parameter values has driven the design of fast numerical algorithms with certifiable accuracies. The reduced basis method (RBM) presents itself as such an option. RBM features a
We introduce and analyze a class of Galerkin-collocation discretization schemes in time for the wave equation. Its conceptual basis is the establishment of a direct connection between the Galerkin method for the time discretization and the classical
In this article, we aim to recover locally conservative and $H(div)$ conforming fluxes for the linear Cut Finite Element Solution with Nitsches method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in