ﻻ يوجد ملخص باللغة العربية
Similarity analysis is used to identify the control parameter $R_A$ for the subset of avalanching systems that can exhibit Self- Organized Criticality (SOC). This parameter expresses the ratio of driving to dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is found to occur when $R_A to 0$. This is in the opposite sense to (Kolmogorov) turbulence, thus identifying a deep distinction between turbulence and SOC and suggesting an observable property that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite $R_A$, with the same $R_A to 0$ exponent, if the system supports a sufficiently large range of lengthscales; necessary for SOC to be a candidate for physical ($R_A$ finite) systems.
This article is mostly based on a talk I gave at the March 2021 meeting (virtual) of the American Physical Society on the occasion of receiving the Dannie Heineman prize for Mathematical Physics from the American Institute of Physics and the American
In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed poi
We review some recent developments in the study of Gibbs and non-Gibbs properties of transformed n-vector lattice and mean-field models under various transformations. Also, some new results for the loss and recovery of the Gibbs property of planar ro
We obtain long series expansions for the bulk, surface and corner free energies for several two-dimensional statistical models, by combining Entings finite lattice method (FLM) with exact transfer matrix enumerations. The models encompass all integra
Monodromy matrices of the $tau_2$ model are known to satisfy a Yang--Baxter equation with a six-vertex $R$-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this $R$-matrix. We